| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dsmmcl.p |  |-  P = ( S Xs_ R ) | 
						
							| 2 |  | dsmmcl.h |  |-  H = ( Base ` ( S (+)m R ) ) | 
						
							| 3 |  | dsmmcl.i |  |-  ( ph -> I e. W ) | 
						
							| 4 |  | dsmmcl.s |  |-  ( ph -> S e. V ) | 
						
							| 5 |  | dsmmcl.r |  |-  ( ph -> R : I --> Mnd ) | 
						
							| 6 |  | dsmm0cl.z |  |-  .0. = ( 0g ` P ) | 
						
							| 7 | 1 3 4 5 | prdsmndd |  |-  ( ph -> P e. Mnd ) | 
						
							| 8 |  | eqid |  |-  ( Base ` P ) = ( Base ` P ) | 
						
							| 9 | 8 6 | mndidcl |  |-  ( P e. Mnd -> .0. e. ( Base ` P ) ) | 
						
							| 10 | 7 9 | syl |  |-  ( ph -> .0. e. ( Base ` P ) ) | 
						
							| 11 | 1 3 4 5 | prds0g |  |-  ( ph -> ( 0g o. R ) = ( 0g ` P ) ) | 
						
							| 12 | 11 6 | eqtr4di |  |-  ( ph -> ( 0g o. R ) = .0. ) | 
						
							| 13 | 12 | adantr |  |-  ( ( ph /\ a e. I ) -> ( 0g o. R ) = .0. ) | 
						
							| 14 | 13 | fveq1d |  |-  ( ( ph /\ a e. I ) -> ( ( 0g o. R ) ` a ) = ( .0. ` a ) ) | 
						
							| 15 | 5 | ffnd |  |-  ( ph -> R Fn I ) | 
						
							| 16 |  | fvco2 |  |-  ( ( R Fn I /\ a e. I ) -> ( ( 0g o. R ) ` a ) = ( 0g ` ( R ` a ) ) ) | 
						
							| 17 | 15 16 | sylan |  |-  ( ( ph /\ a e. I ) -> ( ( 0g o. R ) ` a ) = ( 0g ` ( R ` a ) ) ) | 
						
							| 18 | 14 17 | eqtr3d |  |-  ( ( ph /\ a e. I ) -> ( .0. ` a ) = ( 0g ` ( R ` a ) ) ) | 
						
							| 19 |  | nne |  |-  ( -. ( .0. ` a ) =/= ( 0g ` ( R ` a ) ) <-> ( .0. ` a ) = ( 0g ` ( R ` a ) ) ) | 
						
							| 20 | 18 19 | sylibr |  |-  ( ( ph /\ a e. I ) -> -. ( .0. ` a ) =/= ( 0g ` ( R ` a ) ) ) | 
						
							| 21 | 20 | ralrimiva |  |-  ( ph -> A. a e. I -. ( .0. ` a ) =/= ( 0g ` ( R ` a ) ) ) | 
						
							| 22 |  | rabeq0 |  |-  ( { a e. I | ( .0. ` a ) =/= ( 0g ` ( R ` a ) ) } = (/) <-> A. a e. I -. ( .0. ` a ) =/= ( 0g ` ( R ` a ) ) ) | 
						
							| 23 | 21 22 | sylibr |  |-  ( ph -> { a e. I | ( .0. ` a ) =/= ( 0g ` ( R ` a ) ) } = (/) ) | 
						
							| 24 |  | 0fi |  |-  (/) e. Fin | 
						
							| 25 | 23 24 | eqeltrdi |  |-  ( ph -> { a e. I | ( .0. ` a ) =/= ( 0g ` ( R ` a ) ) } e. Fin ) | 
						
							| 26 |  | eqid |  |-  ( S (+)m R ) = ( S (+)m R ) | 
						
							| 27 | 1 26 8 2 3 15 | dsmmelbas |  |-  ( ph -> ( .0. e. H <-> ( .0. e. ( Base ` P ) /\ { a e. I | ( .0. ` a ) =/= ( 0g ` ( R ` a ) ) } e. Fin ) ) ) | 
						
							| 28 | 10 25 27 | mpbir2and |  |-  ( ph -> .0. e. H ) |