| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dsmmcl.p |  |-  P = ( S Xs_ R ) | 
						
							| 2 |  | dsmmcl.h |  |-  H = ( Base ` ( S (+)m R ) ) | 
						
							| 3 |  | dsmmcl.i |  |-  ( ph -> I e. W ) | 
						
							| 4 |  | dsmmcl.s |  |-  ( ph -> S e. V ) | 
						
							| 5 |  | dsmmcl.r |  |-  ( ph -> R : I --> Mnd ) | 
						
							| 6 |  | dsmmacl.j |  |-  ( ph -> J e. H ) | 
						
							| 7 |  | dsmmacl.k |  |-  ( ph -> K e. H ) | 
						
							| 8 |  | dsmmacl.a |  |-  .+ = ( +g ` P ) | 
						
							| 9 |  | eqid |  |-  ( Base ` P ) = ( Base ` P ) | 
						
							| 10 |  | eqid |  |-  ( S (+)m R ) = ( S (+)m R ) | 
						
							| 11 | 5 | ffnd |  |-  ( ph -> R Fn I ) | 
						
							| 12 | 1 10 9 2 3 11 | dsmmelbas |  |-  ( ph -> ( J e. H <-> ( J e. ( Base ` P ) /\ { a e. I | ( J ` a ) =/= ( 0g ` ( R ` a ) ) } e. Fin ) ) ) | 
						
							| 13 | 6 12 | mpbid |  |-  ( ph -> ( J e. ( Base ` P ) /\ { a e. I | ( J ` a ) =/= ( 0g ` ( R ` a ) ) } e. Fin ) ) | 
						
							| 14 | 13 | simpld |  |-  ( ph -> J e. ( Base ` P ) ) | 
						
							| 15 | 1 10 9 2 3 11 | dsmmelbas |  |-  ( ph -> ( K e. H <-> ( K e. ( Base ` P ) /\ { a e. I | ( K ` a ) =/= ( 0g ` ( R ` a ) ) } e. Fin ) ) ) | 
						
							| 16 | 7 15 | mpbid |  |-  ( ph -> ( K e. ( Base ` P ) /\ { a e. I | ( K ` a ) =/= ( 0g ` ( R ` a ) ) } e. Fin ) ) | 
						
							| 17 | 16 | simpld |  |-  ( ph -> K e. ( Base ` P ) ) | 
						
							| 18 | 1 9 8 4 3 5 14 17 | prdsplusgcl |  |-  ( ph -> ( J .+ K ) e. ( Base ` P ) ) | 
						
							| 19 | 4 | adantr |  |-  ( ( ph /\ a e. I ) -> S e. V ) | 
						
							| 20 | 3 | adantr |  |-  ( ( ph /\ a e. I ) -> I e. W ) | 
						
							| 21 | 11 | adantr |  |-  ( ( ph /\ a e. I ) -> R Fn I ) | 
						
							| 22 | 14 | adantr |  |-  ( ( ph /\ a e. I ) -> J e. ( Base ` P ) ) | 
						
							| 23 | 17 | adantr |  |-  ( ( ph /\ a e. I ) -> K e. ( Base ` P ) ) | 
						
							| 24 |  | simpr |  |-  ( ( ph /\ a e. I ) -> a e. I ) | 
						
							| 25 | 1 9 19 20 21 22 23 8 24 | prdsplusgfval |  |-  ( ( ph /\ a e. I ) -> ( ( J .+ K ) ` a ) = ( ( J ` a ) ( +g ` ( R ` a ) ) ( K ` a ) ) ) | 
						
							| 26 | 25 | neeq1d |  |-  ( ( ph /\ a e. I ) -> ( ( ( J .+ K ) ` a ) =/= ( 0g ` ( R ` a ) ) <-> ( ( J ` a ) ( +g ` ( R ` a ) ) ( K ` a ) ) =/= ( 0g ` ( R ` a ) ) ) ) | 
						
							| 27 | 26 | rabbidva |  |-  ( ph -> { a e. I | ( ( J .+ K ) ` a ) =/= ( 0g ` ( R ` a ) ) } = { a e. I | ( ( J ` a ) ( +g ` ( R ` a ) ) ( K ` a ) ) =/= ( 0g ` ( R ` a ) ) } ) | 
						
							| 28 | 13 | simprd |  |-  ( ph -> { a e. I | ( J ` a ) =/= ( 0g ` ( R ` a ) ) } e. Fin ) | 
						
							| 29 | 16 | simprd |  |-  ( ph -> { a e. I | ( K ` a ) =/= ( 0g ` ( R ` a ) ) } e. Fin ) | 
						
							| 30 |  | unfi |  |-  ( ( { a e. I | ( J ` a ) =/= ( 0g ` ( R ` a ) ) } e. Fin /\ { a e. I | ( K ` a ) =/= ( 0g ` ( R ` a ) ) } e. Fin ) -> ( { a e. I | ( J ` a ) =/= ( 0g ` ( R ` a ) ) } u. { a e. I | ( K ` a ) =/= ( 0g ` ( R ` a ) ) } ) e. Fin ) | 
						
							| 31 | 28 29 30 | syl2anc |  |-  ( ph -> ( { a e. I | ( J ` a ) =/= ( 0g ` ( R ` a ) ) } u. { a e. I | ( K ` a ) =/= ( 0g ` ( R ` a ) ) } ) e. Fin ) | 
						
							| 32 |  | neorian |  |-  ( ( ( J ` a ) =/= ( 0g ` ( R ` a ) ) \/ ( K ` a ) =/= ( 0g ` ( R ` a ) ) ) <-> -. ( ( J ` a ) = ( 0g ` ( R ` a ) ) /\ ( K ` a ) = ( 0g ` ( R ` a ) ) ) ) | 
						
							| 33 | 32 | bicomi |  |-  ( -. ( ( J ` a ) = ( 0g ` ( R ` a ) ) /\ ( K ` a ) = ( 0g ` ( R ` a ) ) ) <-> ( ( J ` a ) =/= ( 0g ` ( R ` a ) ) \/ ( K ` a ) =/= ( 0g ` ( R ` a ) ) ) ) | 
						
							| 34 | 33 | con1bii |  |-  ( -. ( ( J ` a ) =/= ( 0g ` ( R ` a ) ) \/ ( K ` a ) =/= ( 0g ` ( R ` a ) ) ) <-> ( ( J ` a ) = ( 0g ` ( R ` a ) ) /\ ( K ` a ) = ( 0g ` ( R ` a ) ) ) ) | 
						
							| 35 | 5 | ffvelcdmda |  |-  ( ( ph /\ a e. I ) -> ( R ` a ) e. Mnd ) | 
						
							| 36 |  | eqid |  |-  ( Base ` ( R ` a ) ) = ( Base ` ( R ` a ) ) | 
						
							| 37 |  | eqid |  |-  ( 0g ` ( R ` a ) ) = ( 0g ` ( R ` a ) ) | 
						
							| 38 | 36 37 | mndidcl |  |-  ( ( R ` a ) e. Mnd -> ( 0g ` ( R ` a ) ) e. ( Base ` ( R ` a ) ) ) | 
						
							| 39 |  | eqid |  |-  ( +g ` ( R ` a ) ) = ( +g ` ( R ` a ) ) | 
						
							| 40 | 36 39 37 | mndlid |  |-  ( ( ( R ` a ) e. Mnd /\ ( 0g ` ( R ` a ) ) e. ( Base ` ( R ` a ) ) ) -> ( ( 0g ` ( R ` a ) ) ( +g ` ( R ` a ) ) ( 0g ` ( R ` a ) ) ) = ( 0g ` ( R ` a ) ) ) | 
						
							| 41 | 35 38 40 | syl2anc2 |  |-  ( ( ph /\ a e. I ) -> ( ( 0g ` ( R ` a ) ) ( +g ` ( R ` a ) ) ( 0g ` ( R ` a ) ) ) = ( 0g ` ( R ` a ) ) ) | 
						
							| 42 |  | oveq12 |  |-  ( ( ( J ` a ) = ( 0g ` ( R ` a ) ) /\ ( K ` a ) = ( 0g ` ( R ` a ) ) ) -> ( ( J ` a ) ( +g ` ( R ` a ) ) ( K ` a ) ) = ( ( 0g ` ( R ` a ) ) ( +g ` ( R ` a ) ) ( 0g ` ( R ` a ) ) ) ) | 
						
							| 43 | 42 | eqeq1d |  |-  ( ( ( J ` a ) = ( 0g ` ( R ` a ) ) /\ ( K ` a ) = ( 0g ` ( R ` a ) ) ) -> ( ( ( J ` a ) ( +g ` ( R ` a ) ) ( K ` a ) ) = ( 0g ` ( R ` a ) ) <-> ( ( 0g ` ( R ` a ) ) ( +g ` ( R ` a ) ) ( 0g ` ( R ` a ) ) ) = ( 0g ` ( R ` a ) ) ) ) | 
						
							| 44 | 41 43 | syl5ibrcom |  |-  ( ( ph /\ a e. I ) -> ( ( ( J ` a ) = ( 0g ` ( R ` a ) ) /\ ( K ` a ) = ( 0g ` ( R ` a ) ) ) -> ( ( J ` a ) ( +g ` ( R ` a ) ) ( K ` a ) ) = ( 0g ` ( R ` a ) ) ) ) | 
						
							| 45 | 34 44 | biimtrid |  |-  ( ( ph /\ a e. I ) -> ( -. ( ( J ` a ) =/= ( 0g ` ( R ` a ) ) \/ ( K ` a ) =/= ( 0g ` ( R ` a ) ) ) -> ( ( J ` a ) ( +g ` ( R ` a ) ) ( K ` a ) ) = ( 0g ` ( R ` a ) ) ) ) | 
						
							| 46 | 45 | necon1ad |  |-  ( ( ph /\ a e. I ) -> ( ( ( J ` a ) ( +g ` ( R ` a ) ) ( K ` a ) ) =/= ( 0g ` ( R ` a ) ) -> ( ( J ` a ) =/= ( 0g ` ( R ` a ) ) \/ ( K ` a ) =/= ( 0g ` ( R ` a ) ) ) ) ) | 
						
							| 47 | 46 | ss2rabdv |  |-  ( ph -> { a e. I | ( ( J ` a ) ( +g ` ( R ` a ) ) ( K ` a ) ) =/= ( 0g ` ( R ` a ) ) } C_ { a e. I | ( ( J ` a ) =/= ( 0g ` ( R ` a ) ) \/ ( K ` a ) =/= ( 0g ` ( R ` a ) ) ) } ) | 
						
							| 48 |  | unrab |  |-  ( { a e. I | ( J ` a ) =/= ( 0g ` ( R ` a ) ) } u. { a e. I | ( K ` a ) =/= ( 0g ` ( R ` a ) ) } ) = { a e. I | ( ( J ` a ) =/= ( 0g ` ( R ` a ) ) \/ ( K ` a ) =/= ( 0g ` ( R ` a ) ) ) } | 
						
							| 49 | 47 48 | sseqtrrdi |  |-  ( ph -> { a e. I | ( ( J ` a ) ( +g ` ( R ` a ) ) ( K ` a ) ) =/= ( 0g ` ( R ` a ) ) } C_ ( { a e. I | ( J ` a ) =/= ( 0g ` ( R ` a ) ) } u. { a e. I | ( K ` a ) =/= ( 0g ` ( R ` a ) ) } ) ) | 
						
							| 50 | 31 49 | ssfid |  |-  ( ph -> { a e. I | ( ( J ` a ) ( +g ` ( R ` a ) ) ( K ` a ) ) =/= ( 0g ` ( R ` a ) ) } e. Fin ) | 
						
							| 51 | 27 50 | eqeltrd |  |-  ( ph -> { a e. I | ( ( J .+ K ) ` a ) =/= ( 0g ` ( R ` a ) ) } e. Fin ) | 
						
							| 52 | 1 10 9 2 3 11 | dsmmelbas |  |-  ( ph -> ( ( J .+ K ) e. H <-> ( ( J .+ K ) e. ( Base ` P ) /\ { a e. I | ( ( J .+ K ) ` a ) =/= ( 0g ` ( R ` a ) ) } e. Fin ) ) ) | 
						
							| 53 | 18 51 52 | mpbir2and |  |-  ( ph -> ( J .+ K ) e. H ) |