Step |
Hyp |
Ref |
Expression |
1 |
|
dsmmbas2.p |
|- P = ( S Xs_ R ) |
2 |
|
dsmmbas2.b |
|- B = { f e. ( Base ` P ) | dom ( f \ ( 0g o. R ) ) e. Fin } |
3 |
1
|
fveq2i |
|- ( Base ` P ) = ( Base ` ( S Xs_ R ) ) |
4 |
3
|
rabeqi |
|- { f e. ( Base ` P ) | dom ( f \ ( 0g o. R ) ) e. Fin } = { f e. ( Base ` ( S Xs_ R ) ) | dom ( f \ ( 0g o. R ) ) e. Fin } |
5 |
|
simpll |
|- ( ( ( R Fn I /\ I e. V ) /\ f e. ( Base ` ( S Xs_ R ) ) ) -> R Fn I ) |
6 |
|
fvco2 |
|- ( ( R Fn I /\ x e. I ) -> ( ( 0g o. R ) ` x ) = ( 0g ` ( R ` x ) ) ) |
7 |
5 6
|
sylan |
|- ( ( ( ( R Fn I /\ I e. V ) /\ f e. ( Base ` ( S Xs_ R ) ) ) /\ x e. I ) -> ( ( 0g o. R ) ` x ) = ( 0g ` ( R ` x ) ) ) |
8 |
7
|
neeq2d |
|- ( ( ( ( R Fn I /\ I e. V ) /\ f e. ( Base ` ( S Xs_ R ) ) ) /\ x e. I ) -> ( ( f ` x ) =/= ( ( 0g o. R ) ` x ) <-> ( f ` x ) =/= ( 0g ` ( R ` x ) ) ) ) |
9 |
8
|
rabbidva |
|- ( ( ( R Fn I /\ I e. V ) /\ f e. ( Base ` ( S Xs_ R ) ) ) -> { x e. I | ( f ` x ) =/= ( ( 0g o. R ) ` x ) } = { x e. I | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } ) |
10 |
|
eqid |
|- ( S Xs_ R ) = ( S Xs_ R ) |
11 |
|
eqid |
|- ( Base ` ( S Xs_ R ) ) = ( Base ` ( S Xs_ R ) ) |
12 |
|
reldmprds |
|- Rel dom Xs_ |
13 |
10 11 12
|
strov2rcl |
|- ( f e. ( Base ` ( S Xs_ R ) ) -> S e. _V ) |
14 |
13
|
adantl |
|- ( ( ( R Fn I /\ I e. V ) /\ f e. ( Base ` ( S Xs_ R ) ) ) -> S e. _V ) |
15 |
|
simplr |
|- ( ( ( R Fn I /\ I e. V ) /\ f e. ( Base ` ( S Xs_ R ) ) ) -> I e. V ) |
16 |
|
simpr |
|- ( ( ( R Fn I /\ I e. V ) /\ f e. ( Base ` ( S Xs_ R ) ) ) -> f e. ( Base ` ( S Xs_ R ) ) ) |
17 |
10 11 14 15 5 16
|
prdsbasfn |
|- ( ( ( R Fn I /\ I e. V ) /\ f e. ( Base ` ( S Xs_ R ) ) ) -> f Fn I ) |
18 |
|
fn0g |
|- 0g Fn _V |
19 |
|
dffn2 |
|- ( 0g Fn _V <-> 0g : _V --> _V ) |
20 |
18 19
|
mpbi |
|- 0g : _V --> _V |
21 |
|
dffn2 |
|- ( R Fn I <-> R : I --> _V ) |
22 |
21
|
biimpi |
|- ( R Fn I -> R : I --> _V ) |
23 |
|
fco |
|- ( ( 0g : _V --> _V /\ R : I --> _V ) -> ( 0g o. R ) : I --> _V ) |
24 |
20 22 23
|
sylancr |
|- ( R Fn I -> ( 0g o. R ) : I --> _V ) |
25 |
24
|
ffnd |
|- ( R Fn I -> ( 0g o. R ) Fn I ) |
26 |
5 25
|
syl |
|- ( ( ( R Fn I /\ I e. V ) /\ f e. ( Base ` ( S Xs_ R ) ) ) -> ( 0g o. R ) Fn I ) |
27 |
|
fndmdif |
|- ( ( f Fn I /\ ( 0g o. R ) Fn I ) -> dom ( f \ ( 0g o. R ) ) = { x e. I | ( f ` x ) =/= ( ( 0g o. R ) ` x ) } ) |
28 |
17 26 27
|
syl2anc |
|- ( ( ( R Fn I /\ I e. V ) /\ f e. ( Base ` ( S Xs_ R ) ) ) -> dom ( f \ ( 0g o. R ) ) = { x e. I | ( f ` x ) =/= ( ( 0g o. R ) ` x ) } ) |
29 |
|
fndm |
|- ( R Fn I -> dom R = I ) |
30 |
29
|
rabeqdv |
|- ( R Fn I -> { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } = { x e. I | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } ) |
31 |
5 30
|
syl |
|- ( ( ( R Fn I /\ I e. V ) /\ f e. ( Base ` ( S Xs_ R ) ) ) -> { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } = { x e. I | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } ) |
32 |
9 28 31
|
3eqtr4d |
|- ( ( ( R Fn I /\ I e. V ) /\ f e. ( Base ` ( S Xs_ R ) ) ) -> dom ( f \ ( 0g o. R ) ) = { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } ) |
33 |
32
|
eleq1d |
|- ( ( ( R Fn I /\ I e. V ) /\ f e. ( Base ` ( S Xs_ R ) ) ) -> ( dom ( f \ ( 0g o. R ) ) e. Fin <-> { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin ) ) |
34 |
33
|
rabbidva |
|- ( ( R Fn I /\ I e. V ) -> { f e. ( Base ` ( S Xs_ R ) ) | dom ( f \ ( 0g o. R ) ) e. Fin } = { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } ) |
35 |
4 34
|
eqtrid |
|- ( ( R Fn I /\ I e. V ) -> { f e. ( Base ` P ) | dom ( f \ ( 0g o. R ) ) e. Fin } = { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } ) |
36 |
|
fnex |
|- ( ( R Fn I /\ I e. V ) -> R e. _V ) |
37 |
|
eqid |
|- { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } = { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } |
38 |
37
|
dsmmbase |
|- ( R e. _V -> { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } = ( Base ` ( S (+)m R ) ) ) |
39 |
36 38
|
syl |
|- ( ( R Fn I /\ I e. V ) -> { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } = ( Base ` ( S (+)m R ) ) ) |
40 |
35 39
|
eqtrd |
|- ( ( R Fn I /\ I e. V ) -> { f e. ( Base ` P ) | dom ( f \ ( 0g o. R ) ) e. Fin } = ( Base ` ( S (+)m R ) ) ) |
41 |
2 40
|
eqtrid |
|- ( ( R Fn I /\ I e. V ) -> B = ( Base ` ( S (+)m R ) ) ) |