Metamath Proof Explorer


Theorem dsmmbase

Description: Base set of the module direct sum. (Contributed by Stefan O'Rear, 7-Jan-2015)

Ref Expression
Hypothesis dsmmval.b
|- B = { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin }
Assertion dsmmbase
|- ( R e. V -> B = ( Base ` ( S (+)m R ) ) )

Proof

Step Hyp Ref Expression
1 dsmmval.b
 |-  B = { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin }
2 elex
 |-  ( R e. V -> R e. _V )
3 1 ssrab3
 |-  B C_ ( Base ` ( S Xs_ R ) )
4 eqid
 |-  ( ( S Xs_ R ) |`s B ) = ( ( S Xs_ R ) |`s B )
5 eqid
 |-  ( Base ` ( S Xs_ R ) ) = ( Base ` ( S Xs_ R ) )
6 4 5 ressbas2
 |-  ( B C_ ( Base ` ( S Xs_ R ) ) -> B = ( Base ` ( ( S Xs_ R ) |`s B ) ) )
7 3 6 ax-mp
 |-  B = ( Base ` ( ( S Xs_ R ) |`s B ) )
8 1 dsmmval
 |-  ( R e. _V -> ( S (+)m R ) = ( ( S Xs_ R ) |`s B ) )
9 8 fveq2d
 |-  ( R e. _V -> ( Base ` ( S (+)m R ) ) = ( Base ` ( ( S Xs_ R ) |`s B ) ) )
10 7 9 eqtr4id
 |-  ( R e. _V -> B = ( Base ` ( S (+)m R ) ) )
11 2 10 syl
 |-  ( R e. V -> B = ( Base ` ( S (+)m R ) ) )