| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dsmmval.b |  |-  B = { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } | 
						
							| 2 |  | elex |  |-  ( R e. V -> R e. _V ) | 
						
							| 3 | 1 | ssrab3 |  |-  B C_ ( Base ` ( S Xs_ R ) ) | 
						
							| 4 |  | eqid |  |-  ( ( S Xs_ R ) |`s B ) = ( ( S Xs_ R ) |`s B ) | 
						
							| 5 |  | eqid |  |-  ( Base ` ( S Xs_ R ) ) = ( Base ` ( S Xs_ R ) ) | 
						
							| 6 | 4 5 | ressbas2 |  |-  ( B C_ ( Base ` ( S Xs_ R ) ) -> B = ( Base ` ( ( S Xs_ R ) |`s B ) ) ) | 
						
							| 7 | 3 6 | ax-mp |  |-  B = ( Base ` ( ( S Xs_ R ) |`s B ) ) | 
						
							| 8 | 1 | dsmmval |  |-  ( R e. _V -> ( S (+)m R ) = ( ( S Xs_ R ) |`s B ) ) | 
						
							| 9 | 8 | fveq2d |  |-  ( R e. _V -> ( Base ` ( S (+)m R ) ) = ( Base ` ( ( S Xs_ R ) |`s B ) ) ) | 
						
							| 10 | 7 9 | eqtr4id |  |-  ( R e. _V -> B = ( Base ` ( S (+)m R ) ) ) | 
						
							| 11 | 2 10 | syl |  |-  ( R e. V -> B = ( Base ` ( S (+)m R ) ) ) |