Step |
Hyp |
Ref |
Expression |
1 |
|
dsmmelbas.p |
|- P = ( S Xs_ R ) |
2 |
|
dsmmelbas.c |
|- C = ( S (+)m R ) |
3 |
|
dsmmelbas.b |
|- B = ( Base ` P ) |
4 |
|
dsmmelbas.h |
|- H = ( Base ` C ) |
5 |
|
dsmmelbas.i |
|- ( ph -> I e. V ) |
6 |
|
dsmmelbas.r |
|- ( ph -> R Fn I ) |
7 |
2
|
fveq2i |
|- ( Base ` C ) = ( Base ` ( S (+)m R ) ) |
8 |
4 7
|
eqtri |
|- H = ( Base ` ( S (+)m R ) ) |
9 |
|
fnex |
|- ( ( R Fn I /\ I e. V ) -> R e. _V ) |
10 |
6 5 9
|
syl2anc |
|- ( ph -> R e. _V ) |
11 |
|
eqid |
|- { b e. ( Base ` ( S Xs_ R ) ) | { a e. dom R | ( b ` a ) =/= ( 0g ` ( R ` a ) ) } e. Fin } = { b e. ( Base ` ( S Xs_ R ) ) | { a e. dom R | ( b ` a ) =/= ( 0g ` ( R ` a ) ) } e. Fin } |
12 |
11
|
dsmmbase |
|- ( R e. _V -> { b e. ( Base ` ( S Xs_ R ) ) | { a e. dom R | ( b ` a ) =/= ( 0g ` ( R ` a ) ) } e. Fin } = ( Base ` ( S (+)m R ) ) ) |
13 |
10 12
|
syl |
|- ( ph -> { b e. ( Base ` ( S Xs_ R ) ) | { a e. dom R | ( b ` a ) =/= ( 0g ` ( R ` a ) ) } e. Fin } = ( Base ` ( S (+)m R ) ) ) |
14 |
8 13
|
eqtr4id |
|- ( ph -> H = { b e. ( Base ` ( S Xs_ R ) ) | { a e. dom R | ( b ` a ) =/= ( 0g ` ( R ` a ) ) } e. Fin } ) |
15 |
14
|
eleq2d |
|- ( ph -> ( X e. H <-> X e. { b e. ( Base ` ( S Xs_ R ) ) | { a e. dom R | ( b ` a ) =/= ( 0g ` ( R ` a ) ) } e. Fin } ) ) |
16 |
|
fveq1 |
|- ( b = X -> ( b ` a ) = ( X ` a ) ) |
17 |
16
|
neeq1d |
|- ( b = X -> ( ( b ` a ) =/= ( 0g ` ( R ` a ) ) <-> ( X ` a ) =/= ( 0g ` ( R ` a ) ) ) ) |
18 |
17
|
rabbidv |
|- ( b = X -> { a e. dom R | ( b ` a ) =/= ( 0g ` ( R ` a ) ) } = { a e. dom R | ( X ` a ) =/= ( 0g ` ( R ` a ) ) } ) |
19 |
18
|
eleq1d |
|- ( b = X -> ( { a e. dom R | ( b ` a ) =/= ( 0g ` ( R ` a ) ) } e. Fin <-> { a e. dom R | ( X ` a ) =/= ( 0g ` ( R ` a ) ) } e. Fin ) ) |
20 |
19
|
elrab |
|- ( X e. { b e. ( Base ` ( S Xs_ R ) ) | { a e. dom R | ( b ` a ) =/= ( 0g ` ( R ` a ) ) } e. Fin } <-> ( X e. ( Base ` ( S Xs_ R ) ) /\ { a e. dom R | ( X ` a ) =/= ( 0g ` ( R ` a ) ) } e. Fin ) ) |
21 |
1
|
fveq2i |
|- ( Base ` P ) = ( Base ` ( S Xs_ R ) ) |
22 |
3 21
|
eqtr2i |
|- ( Base ` ( S Xs_ R ) ) = B |
23 |
22
|
eleq2i |
|- ( X e. ( Base ` ( S Xs_ R ) ) <-> X e. B ) |
24 |
23
|
a1i |
|- ( ph -> ( X e. ( Base ` ( S Xs_ R ) ) <-> X e. B ) ) |
25 |
|
fndm |
|- ( R Fn I -> dom R = I ) |
26 |
|
rabeq |
|- ( dom R = I -> { a e. dom R | ( X ` a ) =/= ( 0g ` ( R ` a ) ) } = { a e. I | ( X ` a ) =/= ( 0g ` ( R ` a ) ) } ) |
27 |
6 25 26
|
3syl |
|- ( ph -> { a e. dom R | ( X ` a ) =/= ( 0g ` ( R ` a ) ) } = { a e. I | ( X ` a ) =/= ( 0g ` ( R ` a ) ) } ) |
28 |
27
|
eleq1d |
|- ( ph -> ( { a e. dom R | ( X ` a ) =/= ( 0g ` ( R ` a ) ) } e. Fin <-> { a e. I | ( X ` a ) =/= ( 0g ` ( R ` a ) ) } e. Fin ) ) |
29 |
24 28
|
anbi12d |
|- ( ph -> ( ( X e. ( Base ` ( S Xs_ R ) ) /\ { a e. dom R | ( X ` a ) =/= ( 0g ` ( R ` a ) ) } e. Fin ) <-> ( X e. B /\ { a e. I | ( X ` a ) =/= ( 0g ` ( R ` a ) ) } e. Fin ) ) ) |
30 |
20 29
|
syl5bb |
|- ( ph -> ( X e. { b e. ( Base ` ( S Xs_ R ) ) | { a e. dom R | ( b ` a ) =/= ( 0g ` ( R ` a ) ) } e. Fin } <-> ( X e. B /\ { a e. I | ( X ` a ) =/= ( 0g ` ( R ` a ) ) } e. Fin ) ) ) |
31 |
15 30
|
bitrd |
|- ( ph -> ( X e. H <-> ( X e. B /\ { a e. I | ( X ` a ) =/= ( 0g ` ( R ` a ) ) } e. Fin ) ) ) |