| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( Base ` ( S (+)m R ) ) = ( Base ` ( S (+)m R ) ) | 
						
							| 2 | 1 | dsmmval2 |  |-  ( S (+)m R ) = ( ( S Xs_ R ) |`s ( Base ` ( S (+)m R ) ) ) | 
						
							| 3 |  | eqid |  |-  ( S Xs_ R ) = ( S Xs_ R ) | 
						
							| 4 |  | eqid |  |-  ( Base ` ( S Xs_ R ) ) = ( Base ` ( S Xs_ R ) ) | 
						
							| 5 |  | noel |  |-  -. f e. (/) | 
						
							| 6 |  | reldmprds |  |-  Rel dom Xs_ | 
						
							| 7 | 6 | ovprc1 |  |-  ( -. S e. _V -> ( S Xs_ R ) = (/) ) | 
						
							| 8 | 7 | fveq2d |  |-  ( -. S e. _V -> ( Base ` ( S Xs_ R ) ) = ( Base ` (/) ) ) | 
						
							| 9 |  | base0 |  |-  (/) = ( Base ` (/) ) | 
						
							| 10 | 8 9 | eqtr4di |  |-  ( -. S e. _V -> ( Base ` ( S Xs_ R ) ) = (/) ) | 
						
							| 11 | 10 | eleq2d |  |-  ( -. S e. _V -> ( f e. ( Base ` ( S Xs_ R ) ) <-> f e. (/) ) ) | 
						
							| 12 | 5 11 | mtbiri |  |-  ( -. S e. _V -> -. f e. ( Base ` ( S Xs_ R ) ) ) | 
						
							| 13 | 12 | con4i |  |-  ( f e. ( Base ` ( S Xs_ R ) ) -> S e. _V ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ( R Fn I /\ I e. Fin ) /\ f e. ( Base ` ( S Xs_ R ) ) ) -> S e. _V ) | 
						
							| 15 |  | simplr |  |-  ( ( ( R Fn I /\ I e. Fin ) /\ f e. ( Base ` ( S Xs_ R ) ) ) -> I e. Fin ) | 
						
							| 16 |  | simpll |  |-  ( ( ( R Fn I /\ I e. Fin ) /\ f e. ( Base ` ( S Xs_ R ) ) ) -> R Fn I ) | 
						
							| 17 |  | simpr |  |-  ( ( ( R Fn I /\ I e. Fin ) /\ f e. ( Base ` ( S Xs_ R ) ) ) -> f e. ( Base ` ( S Xs_ R ) ) ) | 
						
							| 18 | 3 4 14 15 16 17 | prdsbasfn |  |-  ( ( ( R Fn I /\ I e. Fin ) /\ f e. ( Base ` ( S Xs_ R ) ) ) -> f Fn I ) | 
						
							| 19 | 18 | fndmd |  |-  ( ( ( R Fn I /\ I e. Fin ) /\ f e. ( Base ` ( S Xs_ R ) ) ) -> dom f = I ) | 
						
							| 20 | 19 15 | eqeltrd |  |-  ( ( ( R Fn I /\ I e. Fin ) /\ f e. ( Base ` ( S Xs_ R ) ) ) -> dom f e. Fin ) | 
						
							| 21 |  | difss |  |-  ( f \ ( 0g o. R ) ) C_ f | 
						
							| 22 |  | dmss |  |-  ( ( f \ ( 0g o. R ) ) C_ f -> dom ( f \ ( 0g o. R ) ) C_ dom f ) | 
						
							| 23 | 21 22 | ax-mp |  |-  dom ( f \ ( 0g o. R ) ) C_ dom f | 
						
							| 24 |  | ssfi |  |-  ( ( dom f e. Fin /\ dom ( f \ ( 0g o. R ) ) C_ dom f ) -> dom ( f \ ( 0g o. R ) ) e. Fin ) | 
						
							| 25 | 20 23 24 | sylancl |  |-  ( ( ( R Fn I /\ I e. Fin ) /\ f e. ( Base ` ( S Xs_ R ) ) ) -> dom ( f \ ( 0g o. R ) ) e. Fin ) | 
						
							| 26 | 25 | ralrimiva |  |-  ( ( R Fn I /\ I e. Fin ) -> A. f e. ( Base ` ( S Xs_ R ) ) dom ( f \ ( 0g o. R ) ) e. Fin ) | 
						
							| 27 |  | rabid2 |  |-  ( ( Base ` ( S Xs_ R ) ) = { f e. ( Base ` ( S Xs_ R ) ) | dom ( f \ ( 0g o. R ) ) e. Fin } <-> A. f e. ( Base ` ( S Xs_ R ) ) dom ( f \ ( 0g o. R ) ) e. Fin ) | 
						
							| 28 | 26 27 | sylibr |  |-  ( ( R Fn I /\ I e. Fin ) -> ( Base ` ( S Xs_ R ) ) = { f e. ( Base ` ( S Xs_ R ) ) | dom ( f \ ( 0g o. R ) ) e. Fin } ) | 
						
							| 29 |  | eqid |  |-  { f e. ( Base ` ( S Xs_ R ) ) | dom ( f \ ( 0g o. R ) ) e. Fin } = { f e. ( Base ` ( S Xs_ R ) ) | dom ( f \ ( 0g o. R ) ) e. Fin } | 
						
							| 30 | 3 29 | dsmmbas2 |  |-  ( ( R Fn I /\ I e. Fin ) -> { f e. ( Base ` ( S Xs_ R ) ) | dom ( f \ ( 0g o. R ) ) e. Fin } = ( Base ` ( S (+)m R ) ) ) | 
						
							| 31 | 28 30 | eqtr2d |  |-  ( ( R Fn I /\ I e. Fin ) -> ( Base ` ( S (+)m R ) ) = ( Base ` ( S Xs_ R ) ) ) | 
						
							| 32 | 31 | oveq2d |  |-  ( ( R Fn I /\ I e. Fin ) -> ( ( S Xs_ R ) |`s ( Base ` ( S (+)m R ) ) ) = ( ( S Xs_ R ) |`s ( Base ` ( S Xs_ R ) ) ) ) | 
						
							| 33 |  | ovex |  |-  ( S Xs_ R ) e. _V | 
						
							| 34 | 4 | ressid |  |-  ( ( S Xs_ R ) e. _V -> ( ( S Xs_ R ) |`s ( Base ` ( S Xs_ R ) ) ) = ( S Xs_ R ) ) | 
						
							| 35 | 33 34 | ax-mp |  |-  ( ( S Xs_ R ) |`s ( Base ` ( S Xs_ R ) ) ) = ( S Xs_ R ) | 
						
							| 36 | 32 35 | eqtrdi |  |-  ( ( R Fn I /\ I e. Fin ) -> ( ( S Xs_ R ) |`s ( Base ` ( S (+)m R ) ) ) = ( S Xs_ R ) ) | 
						
							| 37 | 2 36 | eqtrid |  |-  ( ( R Fn I /\ I e. Fin ) -> ( S (+)m R ) = ( S Xs_ R ) ) |