Step |
Hyp |
Ref |
Expression |
1 |
|
dsmmlss.i |
|- ( ph -> I e. W ) |
2 |
|
dsmmlss.s |
|- ( ph -> S e. Ring ) |
3 |
|
dsmmlss.r |
|- ( ph -> R : I --> LMod ) |
4 |
|
dsmmlss.k |
|- ( ( ph /\ x e. I ) -> ( Scalar ` ( R ` x ) ) = S ) |
5 |
|
dsmmlmod.c |
|- C = ( S (+)m R ) |
6 |
|
eqid |
|- ( S Xs_ R ) = ( S Xs_ R ) |
7 |
6 2 1 3 4
|
prdslmodd |
|- ( ph -> ( S Xs_ R ) e. LMod ) |
8 |
|
eqid |
|- ( LSubSp ` ( S Xs_ R ) ) = ( LSubSp ` ( S Xs_ R ) ) |
9 |
|
eqid |
|- ( Base ` ( S (+)m R ) ) = ( Base ` ( S (+)m R ) ) |
10 |
1 2 3 4 6 8 9
|
dsmmlss |
|- ( ph -> ( Base ` ( S (+)m R ) ) e. ( LSubSp ` ( S Xs_ R ) ) ) |
11 |
9
|
dsmmval2 |
|- ( S (+)m R ) = ( ( S Xs_ R ) |`s ( Base ` ( S (+)m R ) ) ) |
12 |
5 11
|
eqtri |
|- C = ( ( S Xs_ R ) |`s ( Base ` ( S (+)m R ) ) ) |
13 |
12 8
|
lsslmod |
|- ( ( ( S Xs_ R ) e. LMod /\ ( Base ` ( S (+)m R ) ) e. ( LSubSp ` ( S Xs_ R ) ) ) -> C e. LMod ) |
14 |
7 10 13
|
syl2anc |
|- ( ph -> C e. LMod ) |