Step |
Hyp |
Ref |
Expression |
1 |
|
dsmmsubg.p |
|- P = ( S Xs_ R ) |
2 |
|
dsmmsubg.h |
|- H = ( Base ` ( S (+)m R ) ) |
3 |
|
dsmmsubg.i |
|- ( ph -> I e. W ) |
4 |
|
dsmmsubg.s |
|- ( ph -> S e. V ) |
5 |
|
dsmmsubg.r |
|- ( ph -> R : I --> Grp ) |
6 |
|
eqidd |
|- ( ph -> ( P |`s H ) = ( P |`s H ) ) |
7 |
|
eqidd |
|- ( ph -> ( 0g ` P ) = ( 0g ` P ) ) |
8 |
|
eqidd |
|- ( ph -> ( +g ` P ) = ( +g ` P ) ) |
9 |
5 3
|
fexd |
|- ( ph -> R e. _V ) |
10 |
|
eqid |
|- { a e. ( Base ` ( S Xs_ R ) ) | { b e. dom R | ( a ` b ) =/= ( 0g ` ( R ` b ) ) } e. Fin } = { a e. ( Base ` ( S Xs_ R ) ) | { b e. dom R | ( a ` b ) =/= ( 0g ` ( R ` b ) ) } e. Fin } |
11 |
10
|
dsmmbase |
|- ( R e. _V -> { a e. ( Base ` ( S Xs_ R ) ) | { b e. dom R | ( a ` b ) =/= ( 0g ` ( R ` b ) ) } e. Fin } = ( Base ` ( S (+)m R ) ) ) |
12 |
9 11
|
syl |
|- ( ph -> { a e. ( Base ` ( S Xs_ R ) ) | { b e. dom R | ( a ` b ) =/= ( 0g ` ( R ` b ) ) } e. Fin } = ( Base ` ( S (+)m R ) ) ) |
13 |
|
ssrab2 |
|- { a e. ( Base ` ( S Xs_ R ) ) | { b e. dom R | ( a ` b ) =/= ( 0g ` ( R ` b ) ) } e. Fin } C_ ( Base ` ( S Xs_ R ) ) |
14 |
12 13
|
eqsstrrdi |
|- ( ph -> ( Base ` ( S (+)m R ) ) C_ ( Base ` ( S Xs_ R ) ) ) |
15 |
1
|
fveq2i |
|- ( Base ` P ) = ( Base ` ( S Xs_ R ) ) |
16 |
14 2 15
|
3sstr4g |
|- ( ph -> H C_ ( Base ` P ) ) |
17 |
|
grpmnd |
|- ( a e. Grp -> a e. Mnd ) |
18 |
17
|
ssriv |
|- Grp C_ Mnd |
19 |
|
fss |
|- ( ( R : I --> Grp /\ Grp C_ Mnd ) -> R : I --> Mnd ) |
20 |
5 18 19
|
sylancl |
|- ( ph -> R : I --> Mnd ) |
21 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
22 |
1 2 3 4 20 21
|
dsmm0cl |
|- ( ph -> ( 0g ` P ) e. H ) |
23 |
3
|
3ad2ant1 |
|- ( ( ph /\ a e. H /\ b e. H ) -> I e. W ) |
24 |
4
|
3ad2ant1 |
|- ( ( ph /\ a e. H /\ b e. H ) -> S e. V ) |
25 |
20
|
3ad2ant1 |
|- ( ( ph /\ a e. H /\ b e. H ) -> R : I --> Mnd ) |
26 |
|
simp2 |
|- ( ( ph /\ a e. H /\ b e. H ) -> a e. H ) |
27 |
|
simp3 |
|- ( ( ph /\ a e. H /\ b e. H ) -> b e. H ) |
28 |
|
eqid |
|- ( +g ` P ) = ( +g ` P ) |
29 |
1 2 23 24 25 26 27 28
|
dsmmacl |
|- ( ( ph /\ a e. H /\ b e. H ) -> ( a ( +g ` P ) b ) e. H ) |
30 |
1 3 4 5
|
prdsgrpd |
|- ( ph -> P e. Grp ) |
31 |
30
|
adantr |
|- ( ( ph /\ a e. H ) -> P e. Grp ) |
32 |
16
|
sselda |
|- ( ( ph /\ a e. H ) -> a e. ( Base ` P ) ) |
33 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
34 |
|
eqid |
|- ( invg ` P ) = ( invg ` P ) |
35 |
33 34
|
grpinvcl |
|- ( ( P e. Grp /\ a e. ( Base ` P ) ) -> ( ( invg ` P ) ` a ) e. ( Base ` P ) ) |
36 |
31 32 35
|
syl2anc |
|- ( ( ph /\ a e. H ) -> ( ( invg ` P ) ` a ) e. ( Base ` P ) ) |
37 |
|
simpr |
|- ( ( ph /\ a e. H ) -> a e. H ) |
38 |
|
eqid |
|- ( S (+)m R ) = ( S (+)m R ) |
39 |
3
|
adantr |
|- ( ( ph /\ a e. H ) -> I e. W ) |
40 |
5
|
ffnd |
|- ( ph -> R Fn I ) |
41 |
40
|
adantr |
|- ( ( ph /\ a e. H ) -> R Fn I ) |
42 |
1 38 33 2 39 41
|
dsmmelbas |
|- ( ( ph /\ a e. H ) -> ( a e. H <-> ( a e. ( Base ` P ) /\ { b e. I | ( a ` b ) =/= ( 0g ` ( R ` b ) ) } e. Fin ) ) ) |
43 |
37 42
|
mpbid |
|- ( ( ph /\ a e. H ) -> ( a e. ( Base ` P ) /\ { b e. I | ( a ` b ) =/= ( 0g ` ( R ` b ) ) } e. Fin ) ) |
44 |
43
|
simprd |
|- ( ( ph /\ a e. H ) -> { b e. I | ( a ` b ) =/= ( 0g ` ( R ` b ) ) } e. Fin ) |
45 |
3
|
ad2antrr |
|- ( ( ( ph /\ a e. H ) /\ b e. I ) -> I e. W ) |
46 |
4
|
ad2antrr |
|- ( ( ( ph /\ a e. H ) /\ b e. I ) -> S e. V ) |
47 |
5
|
ad2antrr |
|- ( ( ( ph /\ a e. H ) /\ b e. I ) -> R : I --> Grp ) |
48 |
32
|
adantr |
|- ( ( ( ph /\ a e. H ) /\ b e. I ) -> a e. ( Base ` P ) ) |
49 |
|
simpr |
|- ( ( ( ph /\ a e. H ) /\ b e. I ) -> b e. I ) |
50 |
1 45 46 47 33 34 48 49
|
prdsinvgd2 |
|- ( ( ( ph /\ a e. H ) /\ b e. I ) -> ( ( ( invg ` P ) ` a ) ` b ) = ( ( invg ` ( R ` b ) ) ` ( a ` b ) ) ) |
51 |
50
|
adantrr |
|- ( ( ( ph /\ a e. H ) /\ ( b e. I /\ ( a ` b ) = ( 0g ` ( R ` b ) ) ) ) -> ( ( ( invg ` P ) ` a ) ` b ) = ( ( invg ` ( R ` b ) ) ` ( a ` b ) ) ) |
52 |
|
fveq2 |
|- ( ( a ` b ) = ( 0g ` ( R ` b ) ) -> ( ( invg ` ( R ` b ) ) ` ( a ` b ) ) = ( ( invg ` ( R ` b ) ) ` ( 0g ` ( R ` b ) ) ) ) |
53 |
52
|
ad2antll |
|- ( ( ( ph /\ a e. H ) /\ ( b e. I /\ ( a ` b ) = ( 0g ` ( R ` b ) ) ) ) -> ( ( invg ` ( R ` b ) ) ` ( a ` b ) ) = ( ( invg ` ( R ` b ) ) ` ( 0g ` ( R ` b ) ) ) ) |
54 |
5
|
ffvelrnda |
|- ( ( ph /\ b e. I ) -> ( R ` b ) e. Grp ) |
55 |
54
|
adantlr |
|- ( ( ( ph /\ a e. H ) /\ b e. I ) -> ( R ` b ) e. Grp ) |
56 |
|
eqid |
|- ( 0g ` ( R ` b ) ) = ( 0g ` ( R ` b ) ) |
57 |
|
eqid |
|- ( invg ` ( R ` b ) ) = ( invg ` ( R ` b ) ) |
58 |
56 57
|
grpinvid |
|- ( ( R ` b ) e. Grp -> ( ( invg ` ( R ` b ) ) ` ( 0g ` ( R ` b ) ) ) = ( 0g ` ( R ` b ) ) ) |
59 |
55 58
|
syl |
|- ( ( ( ph /\ a e. H ) /\ b e. I ) -> ( ( invg ` ( R ` b ) ) ` ( 0g ` ( R ` b ) ) ) = ( 0g ` ( R ` b ) ) ) |
60 |
59
|
adantrr |
|- ( ( ( ph /\ a e. H ) /\ ( b e. I /\ ( a ` b ) = ( 0g ` ( R ` b ) ) ) ) -> ( ( invg ` ( R ` b ) ) ` ( 0g ` ( R ` b ) ) ) = ( 0g ` ( R ` b ) ) ) |
61 |
51 53 60
|
3eqtrd |
|- ( ( ( ph /\ a e. H ) /\ ( b e. I /\ ( a ` b ) = ( 0g ` ( R ` b ) ) ) ) -> ( ( ( invg ` P ) ` a ) ` b ) = ( 0g ` ( R ` b ) ) ) |
62 |
61
|
expr |
|- ( ( ( ph /\ a e. H ) /\ b e. I ) -> ( ( a ` b ) = ( 0g ` ( R ` b ) ) -> ( ( ( invg ` P ) ` a ) ` b ) = ( 0g ` ( R ` b ) ) ) ) |
63 |
62
|
necon3d |
|- ( ( ( ph /\ a e. H ) /\ b e. I ) -> ( ( ( ( invg ` P ) ` a ) ` b ) =/= ( 0g ` ( R ` b ) ) -> ( a ` b ) =/= ( 0g ` ( R ` b ) ) ) ) |
64 |
63
|
ss2rabdv |
|- ( ( ph /\ a e. H ) -> { b e. I | ( ( ( invg ` P ) ` a ) ` b ) =/= ( 0g ` ( R ` b ) ) } C_ { b e. I | ( a ` b ) =/= ( 0g ` ( R ` b ) ) } ) |
65 |
44 64
|
ssfid |
|- ( ( ph /\ a e. H ) -> { b e. I | ( ( ( invg ` P ) ` a ) ` b ) =/= ( 0g ` ( R ` b ) ) } e. Fin ) |
66 |
1 38 33 2 39 41
|
dsmmelbas |
|- ( ( ph /\ a e. H ) -> ( ( ( invg ` P ) ` a ) e. H <-> ( ( ( invg ` P ) ` a ) e. ( Base ` P ) /\ { b e. I | ( ( ( invg ` P ) ` a ) ` b ) =/= ( 0g ` ( R ` b ) ) } e. Fin ) ) ) |
67 |
36 65 66
|
mpbir2and |
|- ( ( ph /\ a e. H ) -> ( ( invg ` P ) ` a ) e. H ) |
68 |
6 7 8 16 22 29 67 30
|
issubgrpd2 |
|- ( ph -> H e. ( SubGrp ` P ) ) |