Step |
Hyp |
Ref |
Expression |
1 |
|
dsmmval2.b |
|- B = ( Base ` ( S (+)m R ) ) |
2 |
|
ssrab2 |
|- { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } C_ ( Base ` ( S Xs_ R ) ) |
3 |
|
eqid |
|- ( ( S Xs_ R ) |`s { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } ) = ( ( S Xs_ R ) |`s { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } ) |
4 |
|
eqid |
|- ( Base ` ( S Xs_ R ) ) = ( Base ` ( S Xs_ R ) ) |
5 |
3 4
|
ressbas2 |
|- ( { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } C_ ( Base ` ( S Xs_ R ) ) -> { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } = ( Base ` ( ( S Xs_ R ) |`s { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } ) ) ) |
6 |
2 5
|
ax-mp |
|- { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } = ( Base ` ( ( S Xs_ R ) |`s { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } ) ) |
7 |
6
|
oveq2i |
|- ( ( S Xs_ R ) |`s { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } ) = ( ( S Xs_ R ) |`s ( Base ` ( ( S Xs_ R ) |`s { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } ) ) ) |
8 |
|
eqid |
|- { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } = { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } |
9 |
8
|
dsmmval |
|- ( R e. _V -> ( S (+)m R ) = ( ( S Xs_ R ) |`s { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } ) ) |
10 |
9
|
fveq2d |
|- ( R e. _V -> ( Base ` ( S (+)m R ) ) = ( Base ` ( ( S Xs_ R ) |`s { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } ) ) ) |
11 |
10
|
oveq2d |
|- ( R e. _V -> ( ( S Xs_ R ) |`s ( Base ` ( S (+)m R ) ) ) = ( ( S Xs_ R ) |`s ( Base ` ( ( S Xs_ R ) |`s { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } ) ) ) ) |
12 |
7 9 11
|
3eqtr4a |
|- ( R e. _V -> ( S (+)m R ) = ( ( S Xs_ R ) |`s ( Base ` ( S (+)m R ) ) ) ) |
13 |
|
ress0 |
|- ( (/) |`s ( Base ` ( S (+)m R ) ) ) = (/) |
14 |
13
|
eqcomi |
|- (/) = ( (/) |`s ( Base ` ( S (+)m R ) ) ) |
15 |
|
reldmdsmm |
|- Rel dom (+)m |
16 |
15
|
ovprc2 |
|- ( -. R e. _V -> ( S (+)m R ) = (/) ) |
17 |
|
reldmprds |
|- Rel dom Xs_ |
18 |
17
|
ovprc2 |
|- ( -. R e. _V -> ( S Xs_ R ) = (/) ) |
19 |
18
|
oveq1d |
|- ( -. R e. _V -> ( ( S Xs_ R ) |`s ( Base ` ( S (+)m R ) ) ) = ( (/) |`s ( Base ` ( S (+)m R ) ) ) ) |
20 |
14 16 19
|
3eqtr4a |
|- ( -. R e. _V -> ( S (+)m R ) = ( ( S Xs_ R ) |`s ( Base ` ( S (+)m R ) ) ) ) |
21 |
12 20
|
pm2.61i |
|- ( S (+)m R ) = ( ( S Xs_ R ) |`s ( Base ` ( S (+)m R ) ) ) |
22 |
1
|
oveq2i |
|- ( ( S Xs_ R ) |`s B ) = ( ( S Xs_ R ) |`s ( Base ` ( S (+)m R ) ) ) |
23 |
21 22
|
eqtr4i |
|- ( S (+)m R ) = ( ( S Xs_ R ) |`s B ) |