| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dsmmval2.b | 
							 |-  B = ( Base ` ( S (+)m R ) )  | 
						
						
							| 2 | 
							
								
							 | 
							ssrab2 | 
							 |-  { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } C_ ( Base ` ( S Xs_ R ) ) | 
						
						
							| 3 | 
							
								
							 | 
							eqid | 
							 |-  ( ( S Xs_ R ) |`s { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } ) = ( ( S Xs_ R ) |`s { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } ) | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` ( S Xs_ R ) ) = ( Base ` ( S Xs_ R ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							ressbas2 | 
							 |-  ( { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } C_ ( Base ` ( S Xs_ R ) ) -> { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } = ( Base ` ( ( S Xs_ R ) |`s { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } ) ) ) | 
						
						
							| 6 | 
							
								2 5
							 | 
							ax-mp | 
							 |-  { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } = ( Base ` ( ( S Xs_ R ) |`s { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } ) ) | 
						
						
							| 7 | 
							
								6
							 | 
							oveq2i | 
							 |-  ( ( S Xs_ R ) |`s { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } ) = ( ( S Xs_ R ) |`s ( Base ` ( ( S Xs_ R ) |`s { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } ) ) ) | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							 |-  { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } = { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } | 
						
						
							| 9 | 
							
								8
							 | 
							dsmmval | 
							 |-  ( R e. _V -> ( S (+)m R ) = ( ( S Xs_ R ) |`s { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } ) ) | 
						
						
							| 10 | 
							
								9
							 | 
							fveq2d | 
							 |-  ( R e. _V -> ( Base ` ( S (+)m R ) ) = ( Base ` ( ( S Xs_ R ) |`s { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } ) ) ) | 
						
						
							| 11 | 
							
								10
							 | 
							oveq2d | 
							 |-  ( R e. _V -> ( ( S Xs_ R ) |`s ( Base ` ( S (+)m R ) ) ) = ( ( S Xs_ R ) |`s ( Base ` ( ( S Xs_ R ) |`s { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } ) ) ) ) | 
						
						
							| 12 | 
							
								7 9 11
							 | 
							3eqtr4a | 
							 |-  ( R e. _V -> ( S (+)m R ) = ( ( S Xs_ R ) |`s ( Base ` ( S (+)m R ) ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							ress0 | 
							 |-  ( (/) |`s ( Base ` ( S (+)m R ) ) ) = (/)  | 
						
						
							| 14 | 
							
								13
							 | 
							eqcomi | 
							 |-  (/) = ( (/) |`s ( Base ` ( S (+)m R ) ) )  | 
						
						
							| 15 | 
							
								
							 | 
							reldmdsmm | 
							 |-  Rel dom (+)m  | 
						
						
							| 16 | 
							
								15
							 | 
							ovprc2 | 
							 |-  ( -. R e. _V -> ( S (+)m R ) = (/) )  | 
						
						
							| 17 | 
							
								
							 | 
							reldmprds | 
							 |-  Rel dom Xs_  | 
						
						
							| 18 | 
							
								17
							 | 
							ovprc2 | 
							 |-  ( -. R e. _V -> ( S Xs_ R ) = (/) )  | 
						
						
							| 19 | 
							
								18
							 | 
							oveq1d | 
							 |-  ( -. R e. _V -> ( ( S Xs_ R ) |`s ( Base ` ( S (+)m R ) ) ) = ( (/) |`s ( Base ` ( S (+)m R ) ) ) )  | 
						
						
							| 20 | 
							
								14 16 19
							 | 
							3eqtr4a | 
							 |-  ( -. R e. _V -> ( S (+)m R ) = ( ( S Xs_ R ) |`s ( Base ` ( S (+)m R ) ) ) )  | 
						
						
							| 21 | 
							
								12 20
							 | 
							pm2.61i | 
							 |-  ( S (+)m R ) = ( ( S Xs_ R ) |`s ( Base ` ( S (+)m R ) ) )  | 
						
						
							| 22 | 
							
								1
							 | 
							oveq2i | 
							 |-  ( ( S Xs_ R ) |`s B ) = ( ( S Xs_ R ) |`s ( Base ` ( S (+)m R ) ) )  | 
						
						
							| 23 | 
							
								21 22
							 | 
							eqtr4i | 
							 |-  ( S (+)m R ) = ( ( S Xs_ R ) |`s B )  |