| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dsmmval2.b |  |-  B = ( Base ` ( S (+)m R ) ) | 
						
							| 2 |  | ssrab2 |  |-  { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } C_ ( Base ` ( S Xs_ R ) ) | 
						
							| 3 |  | eqid |  |-  ( ( S Xs_ R ) |`s { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } ) = ( ( S Xs_ R ) |`s { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } ) | 
						
							| 4 |  | eqid |  |-  ( Base ` ( S Xs_ R ) ) = ( Base ` ( S Xs_ R ) ) | 
						
							| 5 | 3 4 | ressbas2 |  |-  ( { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } C_ ( Base ` ( S Xs_ R ) ) -> { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } = ( Base ` ( ( S Xs_ R ) |`s { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } ) ) ) | 
						
							| 6 | 2 5 | ax-mp |  |-  { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } = ( Base ` ( ( S Xs_ R ) |`s { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } ) ) | 
						
							| 7 | 6 | oveq2i |  |-  ( ( S Xs_ R ) |`s { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } ) = ( ( S Xs_ R ) |`s ( Base ` ( ( S Xs_ R ) |`s { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } ) ) ) | 
						
							| 8 |  | eqid |  |-  { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } = { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } | 
						
							| 9 | 8 | dsmmval |  |-  ( R e. _V -> ( S (+)m R ) = ( ( S Xs_ R ) |`s { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } ) ) | 
						
							| 10 | 9 | fveq2d |  |-  ( R e. _V -> ( Base ` ( S (+)m R ) ) = ( Base ` ( ( S Xs_ R ) |`s { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } ) ) ) | 
						
							| 11 | 10 | oveq2d |  |-  ( R e. _V -> ( ( S Xs_ R ) |`s ( Base ` ( S (+)m R ) ) ) = ( ( S Xs_ R ) |`s ( Base ` ( ( S Xs_ R ) |`s { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } ) ) ) ) | 
						
							| 12 | 7 9 11 | 3eqtr4a |  |-  ( R e. _V -> ( S (+)m R ) = ( ( S Xs_ R ) |`s ( Base ` ( S (+)m R ) ) ) ) | 
						
							| 13 |  | ress0 |  |-  ( (/) |`s ( Base ` ( S (+)m R ) ) ) = (/) | 
						
							| 14 | 13 | eqcomi |  |-  (/) = ( (/) |`s ( Base ` ( S (+)m R ) ) ) | 
						
							| 15 |  | reldmdsmm |  |-  Rel dom (+)m | 
						
							| 16 | 15 | ovprc2 |  |-  ( -. R e. _V -> ( S (+)m R ) = (/) ) | 
						
							| 17 |  | reldmprds |  |-  Rel dom Xs_ | 
						
							| 18 | 17 | ovprc2 |  |-  ( -. R e. _V -> ( S Xs_ R ) = (/) ) | 
						
							| 19 | 18 | oveq1d |  |-  ( -. R e. _V -> ( ( S Xs_ R ) |`s ( Base ` ( S (+)m R ) ) ) = ( (/) |`s ( Base ` ( S (+)m R ) ) ) ) | 
						
							| 20 | 14 16 19 | 3eqtr4a |  |-  ( -. R e. _V -> ( S (+)m R ) = ( ( S Xs_ R ) |`s ( Base ` ( S (+)m R ) ) ) ) | 
						
							| 21 | 12 20 | pm2.61i |  |-  ( S (+)m R ) = ( ( S Xs_ R ) |`s ( Base ` ( S (+)m R ) ) ) | 
						
							| 22 | 1 | oveq2i |  |-  ( ( S Xs_ R ) |`s B ) = ( ( S Xs_ R ) |`s ( Base ` ( S (+)m R ) ) ) | 
						
							| 23 | 21 22 | eqtr4i |  |-  ( S (+)m R ) = ( ( S Xs_ R ) |`s B ) |