Metamath Proof Explorer


Theorem dtruALT

Description: Alternate proof of dtru which requires more axioms but is shorter and may be easier to understand. Like dtruALT2 , it uses ax-pow rather than ax-pr .

Assuming that ZF set theory is consistent, we cannot prove this theorem unless we specify that x and y be distinct. Specifically, Theorem spcev requires that x must not occur in the subexpression -. y = { (/) } in step 4 nor in the subexpression -. y = (/) in step 9. The proof verifier will require that x and y be in a distinct variable group to ensure this. You can check this by deleting the $d statement in set.mm and rerunning the verifier, which will print a detailed explanation of the distinct variable violation. (Contributed by NM, 15-Jul-1994) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion dtruALT
|- -. A. x x = y

Proof

Step Hyp Ref Expression
1 0inp0
 |-  ( y = (/) -> -. y = { (/) } )
2 p0ex
 |-  { (/) } e. _V
3 eqeq2
 |-  ( x = { (/) } -> ( y = x <-> y = { (/) } ) )
4 3 notbid
 |-  ( x = { (/) } -> ( -. y = x <-> -. y = { (/) } ) )
5 2 4 spcev
 |-  ( -. y = { (/) } -> E. x -. y = x )
6 1 5 syl
 |-  ( y = (/) -> E. x -. y = x )
7 0ex
 |-  (/) e. _V
8 eqeq2
 |-  ( x = (/) -> ( y = x <-> y = (/) ) )
9 8 notbid
 |-  ( x = (/) -> ( -. y = x <-> -. y = (/) ) )
10 7 9 spcev
 |-  ( -. y = (/) -> E. x -. y = x )
11 6 10 pm2.61i
 |-  E. x -. y = x
12 exnal
 |-  ( E. x -. y = x <-> -. A. x y = x )
13 eqcom
 |-  ( y = x <-> x = y )
14 13 albii
 |-  ( A. x y = x <-> A. x x = y )
15 12 14 xchbinx
 |-  ( E. x -. y = x <-> -. A. x x = y )
16 11 15 mpbi
 |-  -. A. x x = y