| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elALT2 |
|- E. w x e. w |
| 2 |
|
ax-nul |
|- E. z A. x -. x e. z |
| 3 |
|
elequ1 |
|- ( x = w -> ( x e. z <-> w e. z ) ) |
| 4 |
3
|
notbid |
|- ( x = w -> ( -. x e. z <-> -. w e. z ) ) |
| 5 |
4
|
spw |
|- ( A. x -. x e. z -> -. x e. z ) |
| 6 |
2 5
|
eximii |
|- E. z -. x e. z |
| 7 |
|
exdistrv |
|- ( E. w E. z ( x e. w /\ -. x e. z ) <-> ( E. w x e. w /\ E. z -. x e. z ) ) |
| 8 |
1 6 7
|
mpbir2an |
|- E. w E. z ( x e. w /\ -. x e. z ) |
| 9 |
|
ax9v2 |
|- ( w = z -> ( x e. w -> x e. z ) ) |
| 10 |
9
|
com12 |
|- ( x e. w -> ( w = z -> x e. z ) ) |
| 11 |
10
|
con3dimp |
|- ( ( x e. w /\ -. x e. z ) -> -. w = z ) |
| 12 |
11
|
2eximi |
|- ( E. w E. z ( x e. w /\ -. x e. z ) -> E. w E. z -. w = z ) |
| 13 |
|
equequ2 |
|- ( z = y -> ( w = z <-> w = y ) ) |
| 14 |
13
|
notbid |
|- ( z = y -> ( -. w = z <-> -. w = y ) ) |
| 15 |
|
ax7v1 |
|- ( x = w -> ( x = y -> w = y ) ) |
| 16 |
15
|
con3d |
|- ( x = w -> ( -. w = y -> -. x = y ) ) |
| 17 |
16
|
spimevw |
|- ( -. w = y -> E. x -. x = y ) |
| 18 |
14 17
|
biimtrdi |
|- ( z = y -> ( -. w = z -> E. x -. x = y ) ) |
| 19 |
|
ax7v1 |
|- ( x = z -> ( x = y -> z = y ) ) |
| 20 |
19
|
con3d |
|- ( x = z -> ( -. z = y -> -. x = y ) ) |
| 21 |
20
|
spimevw |
|- ( -. z = y -> E. x -. x = y ) |
| 22 |
21
|
a1d |
|- ( -. z = y -> ( -. w = z -> E. x -. x = y ) ) |
| 23 |
18 22
|
pm2.61i |
|- ( -. w = z -> E. x -. x = y ) |
| 24 |
23
|
exlimivv |
|- ( E. w E. z -. w = z -> E. x -. x = y ) |
| 25 |
8 12 24
|
mp2b |
|- E. x -. x = y |
| 26 |
|
exnal |
|- ( E. x -. x = y <-> -. A. x x = y ) |
| 27 |
25 26
|
mpbi |
|- -. A. x x = y |