Step |
Hyp |
Ref |
Expression |
1 |
|
0inp0 |
|- ( y = (/) -> -. y = { (/) } ) |
2 |
|
snex |
|- { (/) } e. _V |
3 |
|
eqeq2 |
|- ( x = { (/) } -> ( y = x <-> y = { (/) } ) ) |
4 |
3
|
notbid |
|- ( x = { (/) } -> ( -. y = x <-> -. y = { (/) } ) ) |
5 |
2 4
|
spcev |
|- ( -. y = { (/) } -> E. x -. y = x ) |
6 |
1 5
|
syl |
|- ( y = (/) -> E. x -. y = x ) |
7 |
|
0ex |
|- (/) e. _V |
8 |
|
eqeq2 |
|- ( x = (/) -> ( y = x <-> y = (/) ) ) |
9 |
8
|
notbid |
|- ( x = (/) -> ( -. y = x <-> -. y = (/) ) ) |
10 |
7 9
|
spcev |
|- ( -. y = (/) -> E. x -. y = x ) |
11 |
6 10
|
pm2.61i |
|- E. x -. y = x |
12 |
|
exnal |
|- ( E. x -. y = x <-> -. A. x y = x ) |
13 |
|
eqcom |
|- ( y = x <-> x = y ) |
14 |
13
|
albii |
|- ( A. x y = x <-> A. x x = y ) |
15 |
12 14
|
xchbinx |
|- ( E. x -. y = x <-> -. A. x x = y ) |
16 |
11 15
|
mpbi |
|- -. A. x x = y |