| Step | Hyp | Ref | Expression | 
						
							| 1 |  | el |  |-  E. w x e. w | 
						
							| 2 |  | ax-nul |  |-  E. z A. x -. x e. z | 
						
							| 3 |  | elequ1 |  |-  ( x = w -> ( x e. z <-> w e. z ) ) | 
						
							| 4 | 3 | notbid |  |-  ( x = w -> ( -. x e. z <-> -. w e. z ) ) | 
						
							| 5 | 4 | spw |  |-  ( A. x -. x e. z -> -. x e. z ) | 
						
							| 6 | 2 5 | eximii |  |-  E. z -. x e. z | 
						
							| 7 |  | exdistrv |  |-  ( E. w E. z ( x e. w /\ -. x e. z ) <-> ( E. w x e. w /\ E. z -. x e. z ) ) | 
						
							| 8 | 1 6 7 | mpbir2an |  |-  E. w E. z ( x e. w /\ -. x e. z ) | 
						
							| 9 |  | ax9v2 |  |-  ( w = z -> ( x e. w -> x e. z ) ) | 
						
							| 10 | 9 | com12 |  |-  ( x e. w -> ( w = z -> x e. z ) ) | 
						
							| 11 | 10 | con3dimp |  |-  ( ( x e. w /\ -. x e. z ) -> -. w = z ) | 
						
							| 12 | 11 | 2eximi |  |-  ( E. w E. z ( x e. w /\ -. x e. z ) -> E. w E. z -. w = z ) | 
						
							| 13 |  | equequ2 |  |-  ( z = y -> ( w = z <-> w = y ) ) | 
						
							| 14 | 13 | notbid |  |-  ( z = y -> ( -. w = z <-> -. w = y ) ) | 
						
							| 15 |  | ax7v1 |  |-  ( x = w -> ( x = y -> w = y ) ) | 
						
							| 16 | 15 | con3d |  |-  ( x = w -> ( -. w = y -> -. x = y ) ) | 
						
							| 17 | 16 | spimevw |  |-  ( -. w = y -> E. x -. x = y ) | 
						
							| 18 | 14 17 | biimtrdi |  |-  ( z = y -> ( -. w = z -> E. x -. x = y ) ) | 
						
							| 19 |  | ax7v1 |  |-  ( x = z -> ( x = y -> z = y ) ) | 
						
							| 20 | 19 | con3d |  |-  ( x = z -> ( -. z = y -> -. x = y ) ) | 
						
							| 21 | 20 | spimevw |  |-  ( -. z = y -> E. x -. x = y ) | 
						
							| 22 | 21 | a1d |  |-  ( -. z = y -> ( -. w = z -> E. x -. x = y ) ) | 
						
							| 23 | 18 22 | pm2.61i |  |-  ( -. w = z -> E. x -. x = y ) | 
						
							| 24 | 23 | exlimivv |  |-  ( E. w E. z -. w = z -> E. x -. x = y ) | 
						
							| 25 | 8 12 24 | mp2b |  |-  E. x -. x = y | 
						
							| 26 |  | exnal |  |-  ( E. x -. x = y <-> -. A. x x = y ) | 
						
							| 27 | 25 26 | mpbi |  |-  -. A. x x = y |