Step |
Hyp |
Ref |
Expression |
1 |
|
dvaddf.s |
|- ( ph -> S e. { RR , CC } ) |
2 |
|
dvaddf.f |
|- ( ph -> F : X --> CC ) |
3 |
|
dvaddf.g |
|- ( ph -> G : X --> CC ) |
4 |
|
dvaddf.df |
|- ( ph -> dom ( S _D F ) = X ) |
5 |
|
dvaddf.dg |
|- ( ph -> dom ( S _D G ) = X ) |
6 |
|
dvbsss |
|- dom ( S _D F ) C_ S |
7 |
4 6
|
eqsstrrdi |
|- ( ph -> X C_ S ) |
8 |
1 7
|
ssexd |
|- ( ph -> X e. _V ) |
9 |
|
dvfg |
|- ( S e. { RR , CC } -> ( S _D F ) : dom ( S _D F ) --> CC ) |
10 |
1 9
|
syl |
|- ( ph -> ( S _D F ) : dom ( S _D F ) --> CC ) |
11 |
4
|
feq2d |
|- ( ph -> ( ( S _D F ) : dom ( S _D F ) --> CC <-> ( S _D F ) : X --> CC ) ) |
12 |
10 11
|
mpbid |
|- ( ph -> ( S _D F ) : X --> CC ) |
13 |
12
|
ffnd |
|- ( ph -> ( S _D F ) Fn X ) |
14 |
|
dvfg |
|- ( S e. { RR , CC } -> ( S _D G ) : dom ( S _D G ) --> CC ) |
15 |
1 14
|
syl |
|- ( ph -> ( S _D G ) : dom ( S _D G ) --> CC ) |
16 |
5
|
feq2d |
|- ( ph -> ( ( S _D G ) : dom ( S _D G ) --> CC <-> ( S _D G ) : X --> CC ) ) |
17 |
15 16
|
mpbid |
|- ( ph -> ( S _D G ) : X --> CC ) |
18 |
17
|
ffnd |
|- ( ph -> ( S _D G ) Fn X ) |
19 |
|
dvfg |
|- ( S e. { RR , CC } -> ( S _D ( F oF + G ) ) : dom ( S _D ( F oF + G ) ) --> CC ) |
20 |
1 19
|
syl |
|- ( ph -> ( S _D ( F oF + G ) ) : dom ( S _D ( F oF + G ) ) --> CC ) |
21 |
|
recnprss |
|- ( S e. { RR , CC } -> S C_ CC ) |
22 |
1 21
|
syl |
|- ( ph -> S C_ CC ) |
23 |
|
addcl |
|- ( ( x e. CC /\ y e. CC ) -> ( x + y ) e. CC ) |
24 |
23
|
adantl |
|- ( ( ph /\ ( x e. CC /\ y e. CC ) ) -> ( x + y ) e. CC ) |
25 |
|
inidm |
|- ( X i^i X ) = X |
26 |
24 2 3 8 8 25
|
off |
|- ( ph -> ( F oF + G ) : X --> CC ) |
27 |
22 26 7
|
dvbss |
|- ( ph -> dom ( S _D ( F oF + G ) ) C_ X ) |
28 |
2
|
adantr |
|- ( ( ph /\ x e. X ) -> F : X --> CC ) |
29 |
7
|
adantr |
|- ( ( ph /\ x e. X ) -> X C_ S ) |
30 |
3
|
adantr |
|- ( ( ph /\ x e. X ) -> G : X --> CC ) |
31 |
22
|
adantr |
|- ( ( ph /\ x e. X ) -> S C_ CC ) |
32 |
|
fvexd |
|- ( ( ph /\ x e. X ) -> ( ( S _D F ) ` x ) e. _V ) |
33 |
|
fvexd |
|- ( ( ph /\ x e. X ) -> ( ( S _D G ) ` x ) e. _V ) |
34 |
4
|
eleq2d |
|- ( ph -> ( x e. dom ( S _D F ) <-> x e. X ) ) |
35 |
34
|
biimpar |
|- ( ( ph /\ x e. X ) -> x e. dom ( S _D F ) ) |
36 |
1
|
adantr |
|- ( ( ph /\ x e. X ) -> S e. { RR , CC } ) |
37 |
|
ffun |
|- ( ( S _D F ) : dom ( S _D F ) --> CC -> Fun ( S _D F ) ) |
38 |
|
funfvbrb |
|- ( Fun ( S _D F ) -> ( x e. dom ( S _D F ) <-> x ( S _D F ) ( ( S _D F ) ` x ) ) ) |
39 |
36 9 37 38
|
4syl |
|- ( ( ph /\ x e. X ) -> ( x e. dom ( S _D F ) <-> x ( S _D F ) ( ( S _D F ) ` x ) ) ) |
40 |
35 39
|
mpbid |
|- ( ( ph /\ x e. X ) -> x ( S _D F ) ( ( S _D F ) ` x ) ) |
41 |
5
|
eleq2d |
|- ( ph -> ( x e. dom ( S _D G ) <-> x e. X ) ) |
42 |
41
|
biimpar |
|- ( ( ph /\ x e. X ) -> x e. dom ( S _D G ) ) |
43 |
|
ffun |
|- ( ( S _D G ) : dom ( S _D G ) --> CC -> Fun ( S _D G ) ) |
44 |
|
funfvbrb |
|- ( Fun ( S _D G ) -> ( x e. dom ( S _D G ) <-> x ( S _D G ) ( ( S _D G ) ` x ) ) ) |
45 |
36 14 43 44
|
4syl |
|- ( ( ph /\ x e. X ) -> ( x e. dom ( S _D G ) <-> x ( S _D G ) ( ( S _D G ) ` x ) ) ) |
46 |
42 45
|
mpbid |
|- ( ( ph /\ x e. X ) -> x ( S _D G ) ( ( S _D G ) ` x ) ) |
47 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
48 |
28 29 30 29 31 32 33 40 46 47
|
dvaddbr |
|- ( ( ph /\ x e. X ) -> x ( S _D ( F oF + G ) ) ( ( ( S _D F ) ` x ) + ( ( S _D G ) ` x ) ) ) |
49 |
|
reldv |
|- Rel ( S _D ( F oF + G ) ) |
50 |
49
|
releldmi |
|- ( x ( S _D ( F oF + G ) ) ( ( ( S _D F ) ` x ) + ( ( S _D G ) ` x ) ) -> x e. dom ( S _D ( F oF + G ) ) ) |
51 |
48 50
|
syl |
|- ( ( ph /\ x e. X ) -> x e. dom ( S _D ( F oF + G ) ) ) |
52 |
27 51
|
eqelssd |
|- ( ph -> dom ( S _D ( F oF + G ) ) = X ) |
53 |
52
|
feq2d |
|- ( ph -> ( ( S _D ( F oF + G ) ) : dom ( S _D ( F oF + G ) ) --> CC <-> ( S _D ( F oF + G ) ) : X --> CC ) ) |
54 |
20 53
|
mpbid |
|- ( ph -> ( S _D ( F oF + G ) ) : X --> CC ) |
55 |
54
|
ffnd |
|- ( ph -> ( S _D ( F oF + G ) ) Fn X ) |
56 |
|
eqidd |
|- ( ( ph /\ x e. X ) -> ( ( S _D F ) ` x ) = ( ( S _D F ) ` x ) ) |
57 |
|
eqidd |
|- ( ( ph /\ x e. X ) -> ( ( S _D G ) ` x ) = ( ( S _D G ) ` x ) ) |
58 |
28 29 30 29 36 35 42
|
dvadd |
|- ( ( ph /\ x e. X ) -> ( ( S _D ( F oF + G ) ) ` x ) = ( ( ( S _D F ) ` x ) + ( ( S _D G ) ` x ) ) ) |
59 |
58
|
eqcomd |
|- ( ( ph /\ x e. X ) -> ( ( ( S _D F ) ` x ) + ( ( S _D G ) ` x ) ) = ( ( S _D ( F oF + G ) ) ` x ) ) |
60 |
8 13 18 55 56 57 59
|
offveq |
|- ( ph -> ( ( S _D F ) oF + ( S _D G ) ) = ( S _D ( F oF + G ) ) ) |
61 |
60
|
eqcomd |
|- ( ph -> ( S _D ( F oF + G ) ) = ( ( S _D F ) oF + ( S _D G ) ) ) |