Step |
Hyp |
Ref |
Expression |
1 |
|
dvbdfbdioolem1.a |
|- ( ph -> A e. RR ) |
2 |
|
dvbdfbdioolem1.b |
|- ( ph -> B e. RR ) |
3 |
|
dvbdfbdioolem1.f |
|- ( ph -> F : ( A (,) B ) --> RR ) |
4 |
|
dvbdfbdioolem1.dmdv |
|- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
5 |
|
dvbdfbdioolem1.k |
|- ( ph -> K e. RR ) |
6 |
|
dvbdfbdioolem1.dvbd |
|- ( ph -> A. x e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` x ) ) <_ K ) |
7 |
|
dvbdfbdioolem1.c |
|- ( ph -> C e. ( A (,) B ) ) |
8 |
|
dvbdfbdioolem1.d |
|- ( ph -> D e. ( C (,) B ) ) |
9 |
|
ioossre |
|- ( A (,) B ) C_ RR |
10 |
9 7
|
sselid |
|- ( ph -> C e. RR ) |
11 |
|
ioossre |
|- ( C (,) B ) C_ RR |
12 |
11 8
|
sselid |
|- ( ph -> D e. RR ) |
13 |
10
|
rexrd |
|- ( ph -> C e. RR* ) |
14 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
15 |
|
ioogtlb |
|- ( ( C e. RR* /\ B e. RR* /\ D e. ( C (,) B ) ) -> C < D ) |
16 |
13 14 8 15
|
syl3anc |
|- ( ph -> C < D ) |
17 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
18 |
|
ioogtlb |
|- ( ( A e. RR* /\ B e. RR* /\ C e. ( A (,) B ) ) -> A < C ) |
19 |
17 14 7 18
|
syl3anc |
|- ( ph -> A < C ) |
20 |
|
iooltub |
|- ( ( C e. RR* /\ B e. RR* /\ D e. ( C (,) B ) ) -> D < B ) |
21 |
13 14 8 20
|
syl3anc |
|- ( ph -> D < B ) |
22 |
|
iccssioo |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < C /\ D < B ) ) -> ( C [,] D ) C_ ( A (,) B ) ) |
23 |
17 14 19 21 22
|
syl22anc |
|- ( ph -> ( C [,] D ) C_ ( A (,) B ) ) |
24 |
|
ax-resscn |
|- RR C_ CC |
25 |
24
|
a1i |
|- ( ph -> RR C_ CC ) |
26 |
3 25
|
fssd |
|- ( ph -> F : ( A (,) B ) --> CC ) |
27 |
9
|
a1i |
|- ( ph -> ( A (,) B ) C_ RR ) |
28 |
|
dvcn |
|- ( ( ( RR C_ CC /\ F : ( A (,) B ) --> CC /\ ( A (,) B ) C_ RR ) /\ dom ( RR _D F ) = ( A (,) B ) ) -> F e. ( ( A (,) B ) -cn-> CC ) ) |
29 |
25 26 27 4 28
|
syl31anc |
|- ( ph -> F e. ( ( A (,) B ) -cn-> CC ) ) |
30 |
|
cncffvrn |
|- ( ( RR C_ CC /\ F e. ( ( A (,) B ) -cn-> CC ) ) -> ( F e. ( ( A (,) B ) -cn-> RR ) <-> F : ( A (,) B ) --> RR ) ) |
31 |
25 29 30
|
syl2anc |
|- ( ph -> ( F e. ( ( A (,) B ) -cn-> RR ) <-> F : ( A (,) B ) --> RR ) ) |
32 |
3 31
|
mpbird |
|- ( ph -> F e. ( ( A (,) B ) -cn-> RR ) ) |
33 |
|
rescncf |
|- ( ( C [,] D ) C_ ( A (,) B ) -> ( F e. ( ( A (,) B ) -cn-> RR ) -> ( F |` ( C [,] D ) ) e. ( ( C [,] D ) -cn-> RR ) ) ) |
34 |
23 32 33
|
sylc |
|- ( ph -> ( F |` ( C [,] D ) ) e. ( ( C [,] D ) -cn-> RR ) ) |
35 |
23 27
|
sstrd |
|- ( ph -> ( C [,] D ) C_ RR ) |
36 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
37 |
36
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
38 |
36 37
|
dvres |
|- ( ( ( RR C_ CC /\ F : ( A (,) B ) --> CC ) /\ ( ( A (,) B ) C_ RR /\ ( C [,] D ) C_ RR ) ) -> ( RR _D ( F |` ( C [,] D ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( C [,] D ) ) ) ) |
39 |
25 26 27 35 38
|
syl22anc |
|- ( ph -> ( RR _D ( F |` ( C [,] D ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( C [,] D ) ) ) ) |
40 |
|
iccntr |
|- ( ( C e. RR /\ D e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( C [,] D ) ) = ( C (,) D ) ) |
41 |
10 12 40
|
syl2anc |
|- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( C [,] D ) ) = ( C (,) D ) ) |
42 |
41
|
reseq2d |
|- ( ph -> ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( C [,] D ) ) ) = ( ( RR _D F ) |` ( C (,) D ) ) ) |
43 |
39 42
|
eqtrd |
|- ( ph -> ( RR _D ( F |` ( C [,] D ) ) ) = ( ( RR _D F ) |` ( C (,) D ) ) ) |
44 |
43
|
dmeqd |
|- ( ph -> dom ( RR _D ( F |` ( C [,] D ) ) ) = dom ( ( RR _D F ) |` ( C (,) D ) ) ) |
45 |
1 10 19
|
ltled |
|- ( ph -> A <_ C ) |
46 |
12 2 21
|
ltled |
|- ( ph -> D <_ B ) |
47 |
|
ioossioo |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A <_ C /\ D <_ B ) ) -> ( C (,) D ) C_ ( A (,) B ) ) |
48 |
17 14 45 46 47
|
syl22anc |
|- ( ph -> ( C (,) D ) C_ ( A (,) B ) ) |
49 |
48 4
|
sseqtrrd |
|- ( ph -> ( C (,) D ) C_ dom ( RR _D F ) ) |
50 |
|
ssdmres |
|- ( ( C (,) D ) C_ dom ( RR _D F ) <-> dom ( ( RR _D F ) |` ( C (,) D ) ) = ( C (,) D ) ) |
51 |
49 50
|
sylib |
|- ( ph -> dom ( ( RR _D F ) |` ( C (,) D ) ) = ( C (,) D ) ) |
52 |
44 51
|
eqtrd |
|- ( ph -> dom ( RR _D ( F |` ( C [,] D ) ) ) = ( C (,) D ) ) |
53 |
10 12 16 34 52
|
mvth |
|- ( ph -> E. x e. ( C (,) D ) ( ( RR _D ( F |` ( C [,] D ) ) ) ` x ) = ( ( ( ( F |` ( C [,] D ) ) ` D ) - ( ( F |` ( C [,] D ) ) ` C ) ) / ( D - C ) ) ) |
54 |
43
|
fveq1d |
|- ( ph -> ( ( RR _D ( F |` ( C [,] D ) ) ) ` x ) = ( ( ( RR _D F ) |` ( C (,) D ) ) ` x ) ) |
55 |
|
fvres |
|- ( x e. ( C (,) D ) -> ( ( ( RR _D F ) |` ( C (,) D ) ) ` x ) = ( ( RR _D F ) ` x ) ) |
56 |
54 55
|
sylan9eq |
|- ( ( ph /\ x e. ( C (,) D ) ) -> ( ( RR _D ( F |` ( C [,] D ) ) ) ` x ) = ( ( RR _D F ) ` x ) ) |
57 |
56
|
eqcomd |
|- ( ( ph /\ x e. ( C (,) D ) ) -> ( ( RR _D F ) ` x ) = ( ( RR _D ( F |` ( C [,] D ) ) ) ` x ) ) |
58 |
57
|
3adant3 |
|- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D ( F |` ( C [,] D ) ) ) ` x ) = ( ( ( ( F |` ( C [,] D ) ) ` D ) - ( ( F |` ( C [,] D ) ) ` C ) ) / ( D - C ) ) ) -> ( ( RR _D F ) ` x ) = ( ( RR _D ( F |` ( C [,] D ) ) ) ` x ) ) |
59 |
|
simp3 |
|- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D ( F |` ( C [,] D ) ) ) ` x ) = ( ( ( ( F |` ( C [,] D ) ) ` D ) - ( ( F |` ( C [,] D ) ) ` C ) ) / ( D - C ) ) ) -> ( ( RR _D ( F |` ( C [,] D ) ) ) ` x ) = ( ( ( ( F |` ( C [,] D ) ) ` D ) - ( ( F |` ( C [,] D ) ) ` C ) ) / ( D - C ) ) ) |
60 |
12
|
rexrd |
|- ( ph -> D e. RR* ) |
61 |
10 12 16
|
ltled |
|- ( ph -> C <_ D ) |
62 |
|
ubicc2 |
|- ( ( C e. RR* /\ D e. RR* /\ C <_ D ) -> D e. ( C [,] D ) ) |
63 |
13 60 61 62
|
syl3anc |
|- ( ph -> D e. ( C [,] D ) ) |
64 |
|
fvres |
|- ( D e. ( C [,] D ) -> ( ( F |` ( C [,] D ) ) ` D ) = ( F ` D ) ) |
65 |
63 64
|
syl |
|- ( ph -> ( ( F |` ( C [,] D ) ) ` D ) = ( F ` D ) ) |
66 |
|
lbicc2 |
|- ( ( C e. RR* /\ D e. RR* /\ C <_ D ) -> C e. ( C [,] D ) ) |
67 |
13 60 61 66
|
syl3anc |
|- ( ph -> C e. ( C [,] D ) ) |
68 |
|
fvres |
|- ( C e. ( C [,] D ) -> ( ( F |` ( C [,] D ) ) ` C ) = ( F ` C ) ) |
69 |
67 68
|
syl |
|- ( ph -> ( ( F |` ( C [,] D ) ) ` C ) = ( F ` C ) ) |
70 |
65 69
|
oveq12d |
|- ( ph -> ( ( ( F |` ( C [,] D ) ) ` D ) - ( ( F |` ( C [,] D ) ) ` C ) ) = ( ( F ` D ) - ( F ` C ) ) ) |
71 |
70
|
oveq1d |
|- ( ph -> ( ( ( ( F |` ( C [,] D ) ) ` D ) - ( ( F |` ( C [,] D ) ) ` C ) ) / ( D - C ) ) = ( ( ( F ` D ) - ( F ` C ) ) / ( D - C ) ) ) |
72 |
71
|
3ad2ant1 |
|- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D ( F |` ( C [,] D ) ) ) ` x ) = ( ( ( ( F |` ( C [,] D ) ) ` D ) - ( ( F |` ( C [,] D ) ) ` C ) ) / ( D - C ) ) ) -> ( ( ( ( F |` ( C [,] D ) ) ` D ) - ( ( F |` ( C [,] D ) ) ` C ) ) / ( D - C ) ) = ( ( ( F ` D ) - ( F ` C ) ) / ( D - C ) ) ) |
73 |
58 59 72
|
3eqtrd |
|- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D ( F |` ( C [,] D ) ) ) ` x ) = ( ( ( ( F |` ( C [,] D ) ) ` D ) - ( ( F |` ( C [,] D ) ) ` C ) ) / ( D - C ) ) ) -> ( ( RR _D F ) ` x ) = ( ( ( F ` D ) - ( F ` C ) ) / ( D - C ) ) ) |
74 |
|
simp3 |
|- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D F ) ` x ) = ( ( ( F ` D ) - ( F ` C ) ) / ( D - C ) ) ) -> ( ( RR _D F ) ` x ) = ( ( ( F ` D ) - ( F ` C ) ) / ( D - C ) ) ) |
75 |
74
|
eqcomd |
|- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D F ) ` x ) = ( ( ( F ` D ) - ( F ` C ) ) / ( D - C ) ) ) -> ( ( ( F ` D ) - ( F ` C ) ) / ( D - C ) ) = ( ( RR _D F ) ` x ) ) |
76 |
23 63
|
sseldd |
|- ( ph -> D e. ( A (,) B ) ) |
77 |
3 76
|
ffvelrnd |
|- ( ph -> ( F ` D ) e. RR ) |
78 |
3 7
|
ffvelrnd |
|- ( ph -> ( F ` C ) e. RR ) |
79 |
77 78
|
resubcld |
|- ( ph -> ( ( F ` D ) - ( F ` C ) ) e. RR ) |
80 |
79
|
recnd |
|- ( ph -> ( ( F ` D ) - ( F ` C ) ) e. CC ) |
81 |
80
|
3ad2ant1 |
|- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D F ) ` x ) = ( ( ( F ` D ) - ( F ` C ) ) / ( D - C ) ) ) -> ( ( F ` D ) - ( F ` C ) ) e. CC ) |
82 |
|
dvfre |
|- ( ( F : ( A (,) B ) --> RR /\ ( A (,) B ) C_ RR ) -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
83 |
3 27 82
|
syl2anc |
|- ( ph -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
84 |
4
|
feq2d |
|- ( ph -> ( ( RR _D F ) : dom ( RR _D F ) --> RR <-> ( RR _D F ) : ( A (,) B ) --> RR ) ) |
85 |
83 84
|
mpbid |
|- ( ph -> ( RR _D F ) : ( A (,) B ) --> RR ) |
86 |
85
|
adantr |
|- ( ( ph /\ x e. ( C (,) D ) ) -> ( RR _D F ) : ( A (,) B ) --> RR ) |
87 |
48
|
sselda |
|- ( ( ph /\ x e. ( C (,) D ) ) -> x e. ( A (,) B ) ) |
88 |
86 87
|
ffvelrnd |
|- ( ( ph /\ x e. ( C (,) D ) ) -> ( ( RR _D F ) ` x ) e. RR ) |
89 |
88
|
recnd |
|- ( ( ph /\ x e. ( C (,) D ) ) -> ( ( RR _D F ) ` x ) e. CC ) |
90 |
89
|
3adant3 |
|- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D F ) ` x ) = ( ( ( F ` D ) - ( F ` C ) ) / ( D - C ) ) ) -> ( ( RR _D F ) ` x ) e. CC ) |
91 |
12 10
|
resubcld |
|- ( ph -> ( D - C ) e. RR ) |
92 |
91
|
recnd |
|- ( ph -> ( D - C ) e. CC ) |
93 |
92
|
3ad2ant1 |
|- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D F ) ` x ) = ( ( ( F ` D ) - ( F ` C ) ) / ( D - C ) ) ) -> ( D - C ) e. CC ) |
94 |
10 12
|
posdifd |
|- ( ph -> ( C < D <-> 0 < ( D - C ) ) ) |
95 |
16 94
|
mpbid |
|- ( ph -> 0 < ( D - C ) ) |
96 |
95
|
gt0ne0d |
|- ( ph -> ( D - C ) =/= 0 ) |
97 |
96
|
3ad2ant1 |
|- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D F ) ` x ) = ( ( ( F ` D ) - ( F ` C ) ) / ( D - C ) ) ) -> ( D - C ) =/= 0 ) |
98 |
81 90 93 97
|
divmul3d |
|- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D F ) ` x ) = ( ( ( F ` D ) - ( F ` C ) ) / ( D - C ) ) ) -> ( ( ( ( F ` D ) - ( F ` C ) ) / ( D - C ) ) = ( ( RR _D F ) ` x ) <-> ( ( F ` D ) - ( F ` C ) ) = ( ( ( RR _D F ) ` x ) x. ( D - C ) ) ) ) |
99 |
75 98
|
mpbid |
|- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D F ) ` x ) = ( ( ( F ` D ) - ( F ` C ) ) / ( D - C ) ) ) -> ( ( F ` D ) - ( F ` C ) ) = ( ( ( RR _D F ) ` x ) x. ( D - C ) ) ) |
100 |
99
|
fveq2d |
|- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D F ) ` x ) = ( ( ( F ` D ) - ( F ` C ) ) / ( D - C ) ) ) -> ( abs ` ( ( F ` D ) - ( F ` C ) ) ) = ( abs ` ( ( ( RR _D F ) ` x ) x. ( D - C ) ) ) ) |
101 |
92
|
adantr |
|- ( ( ph /\ x e. ( C (,) D ) ) -> ( D - C ) e. CC ) |
102 |
89 101
|
absmuld |
|- ( ( ph /\ x e. ( C (,) D ) ) -> ( abs ` ( ( ( RR _D F ) ` x ) x. ( D - C ) ) ) = ( ( abs ` ( ( RR _D F ) ` x ) ) x. ( abs ` ( D - C ) ) ) ) |
103 |
102
|
3adant3 |
|- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D F ) ` x ) = ( ( ( F ` D ) - ( F ` C ) ) / ( D - C ) ) ) -> ( abs ` ( ( ( RR _D F ) ` x ) x. ( D - C ) ) ) = ( ( abs ` ( ( RR _D F ) ` x ) ) x. ( abs ` ( D - C ) ) ) ) |
104 |
100 103
|
eqtrd |
|- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D F ) ` x ) = ( ( ( F ` D ) - ( F ` C ) ) / ( D - C ) ) ) -> ( abs ` ( ( F ` D ) - ( F ` C ) ) ) = ( ( abs ` ( ( RR _D F ) ` x ) ) x. ( abs ` ( D - C ) ) ) ) |
105 |
10 12 61
|
abssubge0d |
|- ( ph -> ( abs ` ( D - C ) ) = ( D - C ) ) |
106 |
105
|
oveq2d |
|- ( ph -> ( ( abs ` ( ( RR _D F ) ` x ) ) x. ( abs ` ( D - C ) ) ) = ( ( abs ` ( ( RR _D F ) ` x ) ) x. ( D - C ) ) ) |
107 |
106
|
3ad2ant1 |
|- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D F ) ` x ) = ( ( ( F ` D ) - ( F ` C ) ) / ( D - C ) ) ) -> ( ( abs ` ( ( RR _D F ) ` x ) ) x. ( abs ` ( D - C ) ) ) = ( ( abs ` ( ( RR _D F ) ` x ) ) x. ( D - C ) ) ) |
108 |
104 107
|
eqtrd |
|- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D F ) ` x ) = ( ( ( F ` D ) - ( F ` C ) ) / ( D - C ) ) ) -> ( abs ` ( ( F ` D ) - ( F ` C ) ) ) = ( ( abs ` ( ( RR _D F ) ` x ) ) x. ( D - C ) ) ) |
109 |
89
|
abscld |
|- ( ( ph /\ x e. ( C (,) D ) ) -> ( abs ` ( ( RR _D F ) ` x ) ) e. RR ) |
110 |
5
|
adantr |
|- ( ( ph /\ x e. ( C (,) D ) ) -> K e. RR ) |
111 |
91
|
adantr |
|- ( ( ph /\ x e. ( C (,) D ) ) -> ( D - C ) e. RR ) |
112 |
|
0red |
|- ( ph -> 0 e. RR ) |
113 |
112 91 95
|
ltled |
|- ( ph -> 0 <_ ( D - C ) ) |
114 |
113
|
adantr |
|- ( ( ph /\ x e. ( C (,) D ) ) -> 0 <_ ( D - C ) ) |
115 |
6
|
adantr |
|- ( ( ph /\ x e. ( C (,) D ) ) -> A. x e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` x ) ) <_ K ) |
116 |
|
rspa |
|- ( ( A. x e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` x ) ) <_ K /\ x e. ( A (,) B ) ) -> ( abs ` ( ( RR _D F ) ` x ) ) <_ K ) |
117 |
115 87 116
|
syl2anc |
|- ( ( ph /\ x e. ( C (,) D ) ) -> ( abs ` ( ( RR _D F ) ` x ) ) <_ K ) |
118 |
109 110 111 114 117
|
lemul1ad |
|- ( ( ph /\ x e. ( C (,) D ) ) -> ( ( abs ` ( ( RR _D F ) ` x ) ) x. ( D - C ) ) <_ ( K x. ( D - C ) ) ) |
119 |
118
|
3adant3 |
|- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D F ) ` x ) = ( ( ( F ` D ) - ( F ` C ) ) / ( D - C ) ) ) -> ( ( abs ` ( ( RR _D F ) ` x ) ) x. ( D - C ) ) <_ ( K x. ( D - C ) ) ) |
120 |
108 119
|
eqbrtrd |
|- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D F ) ` x ) = ( ( ( F ` D ) - ( F ` C ) ) / ( D - C ) ) ) -> ( abs ` ( ( F ` D ) - ( F ` C ) ) ) <_ ( K x. ( D - C ) ) ) |
121 |
73 120
|
syld3an3 |
|- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D ( F |` ( C [,] D ) ) ) ` x ) = ( ( ( ( F |` ( C [,] D ) ) ` D ) - ( ( F |` ( C [,] D ) ) ` C ) ) / ( D - C ) ) ) -> ( abs ` ( ( F ` D ) - ( F ` C ) ) ) <_ ( K x. ( D - C ) ) ) |
122 |
101
|
abscld |
|- ( ( ph /\ x e. ( C (,) D ) ) -> ( abs ` ( D - C ) ) e. RR ) |
123 |
2 1
|
resubcld |
|- ( ph -> ( B - A ) e. RR ) |
124 |
123
|
adantr |
|- ( ( ph /\ x e. ( C (,) D ) ) -> ( B - A ) e. RR ) |
125 |
89
|
absge0d |
|- ( ( ph /\ x e. ( C (,) D ) ) -> 0 <_ ( abs ` ( ( RR _D F ) ` x ) ) ) |
126 |
101
|
absge0d |
|- ( ( ph /\ x e. ( C (,) D ) ) -> 0 <_ ( abs ` ( D - C ) ) ) |
127 |
12 1 2 10 46 45
|
le2subd |
|- ( ph -> ( D - C ) <_ ( B - A ) ) |
128 |
105 127
|
eqbrtrd |
|- ( ph -> ( abs ` ( D - C ) ) <_ ( B - A ) ) |
129 |
128
|
adantr |
|- ( ( ph /\ x e. ( C (,) D ) ) -> ( abs ` ( D - C ) ) <_ ( B - A ) ) |
130 |
109 110 122 124 125 126 117 129
|
lemul12ad |
|- ( ( ph /\ x e. ( C (,) D ) ) -> ( ( abs ` ( ( RR _D F ) ` x ) ) x. ( abs ` ( D - C ) ) ) <_ ( K x. ( B - A ) ) ) |
131 |
130
|
3adant3 |
|- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D F ) ` x ) = ( ( ( F ` D ) - ( F ` C ) ) / ( D - C ) ) ) -> ( ( abs ` ( ( RR _D F ) ` x ) ) x. ( abs ` ( D - C ) ) ) <_ ( K x. ( B - A ) ) ) |
132 |
104 131
|
eqbrtrd |
|- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D F ) ` x ) = ( ( ( F ` D ) - ( F ` C ) ) / ( D - C ) ) ) -> ( abs ` ( ( F ` D ) - ( F ` C ) ) ) <_ ( K x. ( B - A ) ) ) |
133 |
73 132
|
syld3an3 |
|- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D ( F |` ( C [,] D ) ) ) ` x ) = ( ( ( ( F |` ( C [,] D ) ) ` D ) - ( ( F |` ( C [,] D ) ) ` C ) ) / ( D - C ) ) ) -> ( abs ` ( ( F ` D ) - ( F ` C ) ) ) <_ ( K x. ( B - A ) ) ) |
134 |
121 133
|
jca |
|- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D ( F |` ( C [,] D ) ) ) ` x ) = ( ( ( ( F |` ( C [,] D ) ) ` D ) - ( ( F |` ( C [,] D ) ) ` C ) ) / ( D - C ) ) ) -> ( ( abs ` ( ( F ` D ) - ( F ` C ) ) ) <_ ( K x. ( D - C ) ) /\ ( abs ` ( ( F ` D ) - ( F ` C ) ) ) <_ ( K x. ( B - A ) ) ) ) |
135 |
134
|
rexlimdv3a |
|- ( ph -> ( E. x e. ( C (,) D ) ( ( RR _D ( F |` ( C [,] D ) ) ) ` x ) = ( ( ( ( F |` ( C [,] D ) ) ` D ) - ( ( F |` ( C [,] D ) ) ` C ) ) / ( D - C ) ) -> ( ( abs ` ( ( F ` D ) - ( F ` C ) ) ) <_ ( K x. ( D - C ) ) /\ ( abs ` ( ( F ` D ) - ( F ` C ) ) ) <_ ( K x. ( B - A ) ) ) ) ) |
136 |
53 135
|
mpd |
|- ( ph -> ( ( abs ` ( ( F ` D ) - ( F ` C ) ) ) <_ ( K x. ( D - C ) ) /\ ( abs ` ( ( F ` D ) - ( F ` C ) ) ) <_ ( K x. ( B - A ) ) ) ) |