Step |
Hyp |
Ref |
Expression |
1 |
|
dvcl.s |
|- ( ph -> S C_ CC ) |
2 |
|
dvcl.f |
|- ( ph -> F : A --> CC ) |
3 |
|
dvcl.a |
|- ( ph -> A C_ S ) |
4 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t S ) = ( ( TopOpen ` CCfld ) |`t S ) |
5 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
6 |
1 2 3 4 5
|
dvbssntr |
|- ( ph -> dom ( S _D F ) C_ ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` A ) ) |
7 |
5
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
8 |
|
cnex |
|- CC e. _V |
9 |
|
ssexg |
|- ( ( S C_ CC /\ CC e. _V ) -> S e. _V ) |
10 |
1 8 9
|
sylancl |
|- ( ph -> S e. _V ) |
11 |
|
resttop |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ S e. _V ) -> ( ( TopOpen ` CCfld ) |`t S ) e. Top ) |
12 |
7 10 11
|
sylancr |
|- ( ph -> ( ( TopOpen ` CCfld ) |`t S ) e. Top ) |
13 |
5
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
14 |
|
resttopon |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ S C_ CC ) -> ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) ) |
15 |
13 1 14
|
sylancr |
|- ( ph -> ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) ) |
16 |
|
toponuni |
|- ( ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) -> S = U. ( ( TopOpen ` CCfld ) |`t S ) ) |
17 |
15 16
|
syl |
|- ( ph -> S = U. ( ( TopOpen ` CCfld ) |`t S ) ) |
18 |
3 17
|
sseqtrd |
|- ( ph -> A C_ U. ( ( TopOpen ` CCfld ) |`t S ) ) |
19 |
|
eqid |
|- U. ( ( TopOpen ` CCfld ) |`t S ) = U. ( ( TopOpen ` CCfld ) |`t S ) |
20 |
19
|
ntrss2 |
|- ( ( ( ( TopOpen ` CCfld ) |`t S ) e. Top /\ A C_ U. ( ( TopOpen ` CCfld ) |`t S ) ) -> ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` A ) C_ A ) |
21 |
12 18 20
|
syl2anc |
|- ( ph -> ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` A ) C_ A ) |
22 |
6 21
|
sstrd |
|- ( ph -> dom ( S _D F ) C_ A ) |