| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvcl.s |
|- ( ph -> S C_ CC ) |
| 2 |
|
dvcl.f |
|- ( ph -> F : A --> CC ) |
| 3 |
|
dvcl.a |
|- ( ph -> A C_ S ) |
| 4 |
|
dvbssntr.j |
|- J = ( K |`t S ) |
| 5 |
|
dvbssntr.k |
|- K = ( TopOpen ` CCfld ) |
| 6 |
4 5
|
dvfval |
|- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> ( ( S _D F ) = U_ x e. ( ( int ` J ) ` A ) ( { x } X. ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) /\ ( S _D F ) C_ ( ( ( int ` J ) ` A ) X. CC ) ) ) |
| 7 |
1 2 3 6
|
syl3anc |
|- ( ph -> ( ( S _D F ) = U_ x e. ( ( int ` J ) ` A ) ( { x } X. ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) /\ ( S _D F ) C_ ( ( ( int ` J ) ` A ) X. CC ) ) ) |
| 8 |
|
dmss |
|- ( ( S _D F ) C_ ( ( ( int ` J ) ` A ) X. CC ) -> dom ( S _D F ) C_ dom ( ( ( int ` J ) ` A ) X. CC ) ) |
| 9 |
7 8
|
simpl2im |
|- ( ph -> dom ( S _D F ) C_ dom ( ( ( int ` J ) ` A ) X. CC ) ) |
| 10 |
|
dmxpss |
|- dom ( ( ( int ` J ) ` A ) X. CC ) C_ ( ( int ` J ) ` A ) |
| 11 |
9 10
|
sstrdi |
|- ( ph -> dom ( S _D F ) C_ ( ( int ` J ) ` A ) ) |