Step |
Hyp |
Ref |
Expression |
1 |
|
df-dv |
|- _D = ( s e. ~P CC , f e. ( CC ^pm s ) |-> U_ x e. ( ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) ` dom f ) ( { x } X. ( ( z e. ( dom f \ { x } ) |-> ( ( ( f ` z ) - ( f ` x ) ) / ( z - x ) ) ) limCC x ) ) ) |
2 |
1
|
reldmmpo |
|- Rel dom _D |
3 |
|
df-rel |
|- ( Rel dom _D <-> dom _D C_ ( _V X. _V ) ) |
4 |
2 3
|
mpbi |
|- dom _D C_ ( _V X. _V ) |
5 |
4
|
sseli |
|- ( <. S , F >. e. dom _D -> <. S , F >. e. ( _V X. _V ) ) |
6 |
|
opelxp1 |
|- ( <. S , F >. e. ( _V X. _V ) -> S e. _V ) |
7 |
5 6
|
syl |
|- ( <. S , F >. e. dom _D -> S e. _V ) |
8 |
|
opeq1 |
|- ( s = S -> <. s , F >. = <. S , F >. ) |
9 |
8
|
eleq1d |
|- ( s = S -> ( <. s , F >. e. dom _D <-> <. S , F >. e. dom _D ) ) |
10 |
|
eleq1 |
|- ( s = S -> ( s e. ~P CC <-> S e. ~P CC ) ) |
11 |
|
oveq2 |
|- ( s = S -> ( CC ^pm s ) = ( CC ^pm S ) ) |
12 |
11
|
eleq2d |
|- ( s = S -> ( F e. ( CC ^pm s ) <-> F e. ( CC ^pm S ) ) ) |
13 |
10 12
|
anbi12d |
|- ( s = S -> ( ( s e. ~P CC /\ F e. ( CC ^pm s ) ) <-> ( S e. ~P CC /\ F e. ( CC ^pm S ) ) ) ) |
14 |
9 13
|
imbi12d |
|- ( s = S -> ( ( <. s , F >. e. dom _D -> ( s e. ~P CC /\ F e. ( CC ^pm s ) ) ) <-> ( <. S , F >. e. dom _D -> ( S e. ~P CC /\ F e. ( CC ^pm S ) ) ) ) ) |
15 |
1
|
dmmpossx |
|- dom _D C_ U_ s e. ~P CC ( { s } X. ( CC ^pm s ) ) |
16 |
15
|
sseli |
|- ( <. s , F >. e. dom _D -> <. s , F >. e. U_ s e. ~P CC ( { s } X. ( CC ^pm s ) ) ) |
17 |
|
opeliunxp |
|- ( <. s , F >. e. U_ s e. ~P CC ( { s } X. ( CC ^pm s ) ) <-> ( s e. ~P CC /\ F e. ( CC ^pm s ) ) ) |
18 |
16 17
|
sylib |
|- ( <. s , F >. e. dom _D -> ( s e. ~P CC /\ F e. ( CC ^pm s ) ) ) |
19 |
14 18
|
vtoclg |
|- ( S e. _V -> ( <. S , F >. e. dom _D -> ( S e. ~P CC /\ F e. ( CC ^pm S ) ) ) ) |
20 |
7 19
|
mpcom |
|- ( <. S , F >. e. dom _D -> ( S e. ~P CC /\ F e. ( CC ^pm S ) ) ) |
21 |
20
|
simpld |
|- ( <. S , F >. e. dom _D -> S e. ~P CC ) |
22 |
21
|
elpwid |
|- ( <. S , F >. e. dom _D -> S C_ CC ) |
23 |
20
|
simprd |
|- ( <. S , F >. e. dom _D -> F e. ( CC ^pm S ) ) |
24 |
|
cnex |
|- CC e. _V |
25 |
|
elpm2g |
|- ( ( CC e. _V /\ S e. ~P CC ) -> ( F e. ( CC ^pm S ) <-> ( F : dom F --> CC /\ dom F C_ S ) ) ) |
26 |
24 21 25
|
sylancr |
|- ( <. S , F >. e. dom _D -> ( F e. ( CC ^pm S ) <-> ( F : dom F --> CC /\ dom F C_ S ) ) ) |
27 |
23 26
|
mpbid |
|- ( <. S , F >. e. dom _D -> ( F : dom F --> CC /\ dom F C_ S ) ) |
28 |
27
|
simpld |
|- ( <. S , F >. e. dom _D -> F : dom F --> CC ) |
29 |
27
|
simprd |
|- ( <. S , F >. e. dom _D -> dom F C_ S ) |
30 |
22 28 29
|
dvbss |
|- ( <. S , F >. e. dom _D -> dom ( S _D F ) C_ dom F ) |
31 |
30 29
|
sstrd |
|- ( <. S , F >. e. dom _D -> dom ( S _D F ) C_ S ) |
32 |
|
df-ov |
|- ( S _D F ) = ( _D ` <. S , F >. ) |
33 |
|
ndmfv |
|- ( -. <. S , F >. e. dom _D -> ( _D ` <. S , F >. ) = (/) ) |
34 |
32 33
|
eqtrid |
|- ( -. <. S , F >. e. dom _D -> ( S _D F ) = (/) ) |
35 |
34
|
dmeqd |
|- ( -. <. S , F >. e. dom _D -> dom ( S _D F ) = dom (/) ) |
36 |
|
dm0 |
|- dom (/) = (/) |
37 |
35 36
|
eqtrdi |
|- ( -. <. S , F >. e. dom _D -> dom ( S _D F ) = (/) ) |
38 |
|
0ss |
|- (/) C_ S |
39 |
37 38
|
eqsstrdi |
|- ( -. <. S , F >. e. dom _D -> dom ( S _D F ) C_ S ) |
40 |
31 39
|
pm2.61i |
|- dom ( S _D F ) C_ S |