Step |
Hyp |
Ref |
Expression |
1 |
|
dvf |
|- ( RR _D ( * o. F ) ) : dom ( RR _D ( * o. F ) ) --> CC |
2 |
|
ffun |
|- ( ( RR _D ( * o. F ) ) : dom ( RR _D ( * o. F ) ) --> CC -> Fun ( RR _D ( * o. F ) ) ) |
3 |
1 2
|
ax-mp |
|- Fun ( RR _D ( * o. F ) ) |
4 |
|
simpll |
|- ( ( ( F : X --> CC /\ X C_ RR ) /\ x e. dom ( RR _D F ) ) -> F : X --> CC ) |
5 |
|
simplr |
|- ( ( ( F : X --> CC /\ X C_ RR ) /\ x e. dom ( RR _D F ) ) -> X C_ RR ) |
6 |
|
simpr |
|- ( ( ( F : X --> CC /\ X C_ RR ) /\ x e. dom ( RR _D F ) ) -> x e. dom ( RR _D F ) ) |
7 |
4 5 6
|
dvcjbr |
|- ( ( ( F : X --> CC /\ X C_ RR ) /\ x e. dom ( RR _D F ) ) -> x ( RR _D ( * o. F ) ) ( * ` ( ( RR _D F ) ` x ) ) ) |
8 |
|
funbrfv |
|- ( Fun ( RR _D ( * o. F ) ) -> ( x ( RR _D ( * o. F ) ) ( * ` ( ( RR _D F ) ` x ) ) -> ( ( RR _D ( * o. F ) ) ` x ) = ( * ` ( ( RR _D F ) ` x ) ) ) ) |
9 |
3 7 8
|
mpsyl |
|- ( ( ( F : X --> CC /\ X C_ RR ) /\ x e. dom ( RR _D F ) ) -> ( ( RR _D ( * o. F ) ) ` x ) = ( * ` ( ( RR _D F ) ` x ) ) ) |
10 |
9
|
mpteq2dva |
|- ( ( F : X --> CC /\ X C_ RR ) -> ( x e. dom ( RR _D F ) |-> ( ( RR _D ( * o. F ) ) ` x ) ) = ( x e. dom ( RR _D F ) |-> ( * ` ( ( RR _D F ) ` x ) ) ) ) |
11 |
|
cjf |
|- * : CC --> CC |
12 |
|
fco |
|- ( ( * : CC --> CC /\ F : X --> CC ) -> ( * o. F ) : X --> CC ) |
13 |
11 12
|
mpan |
|- ( F : X --> CC -> ( * o. F ) : X --> CC ) |
14 |
13
|
ad2antrr |
|- ( ( ( F : X --> CC /\ X C_ RR ) /\ x e. dom ( RR _D ( * o. F ) ) ) -> ( * o. F ) : X --> CC ) |
15 |
|
simplr |
|- ( ( ( F : X --> CC /\ X C_ RR ) /\ x e. dom ( RR _D ( * o. F ) ) ) -> X C_ RR ) |
16 |
|
simpr |
|- ( ( ( F : X --> CC /\ X C_ RR ) /\ x e. dom ( RR _D ( * o. F ) ) ) -> x e. dom ( RR _D ( * o. F ) ) ) |
17 |
14 15 16
|
dvcjbr |
|- ( ( ( F : X --> CC /\ X C_ RR ) /\ x e. dom ( RR _D ( * o. F ) ) ) -> x ( RR _D ( * o. ( * o. F ) ) ) ( * ` ( ( RR _D ( * o. F ) ) ` x ) ) ) |
18 |
|
vex |
|- x e. _V |
19 |
|
fvex |
|- ( * ` ( ( RR _D ( * o. F ) ) ` x ) ) e. _V |
20 |
18 19
|
breldm |
|- ( x ( RR _D ( * o. ( * o. F ) ) ) ( * ` ( ( RR _D ( * o. F ) ) ` x ) ) -> x e. dom ( RR _D ( * o. ( * o. F ) ) ) ) |
21 |
17 20
|
syl |
|- ( ( ( F : X --> CC /\ X C_ RR ) /\ x e. dom ( RR _D ( * o. F ) ) ) -> x e. dom ( RR _D ( * o. ( * o. F ) ) ) ) |
22 |
21
|
ex |
|- ( ( F : X --> CC /\ X C_ RR ) -> ( x e. dom ( RR _D ( * o. F ) ) -> x e. dom ( RR _D ( * o. ( * o. F ) ) ) ) ) |
23 |
22
|
ssrdv |
|- ( ( F : X --> CC /\ X C_ RR ) -> dom ( RR _D ( * o. F ) ) C_ dom ( RR _D ( * o. ( * o. F ) ) ) ) |
24 |
|
ffvelrn |
|- ( ( F : X --> CC /\ x e. X ) -> ( F ` x ) e. CC ) |
25 |
24
|
adantlr |
|- ( ( ( F : X --> CC /\ X C_ RR ) /\ x e. X ) -> ( F ` x ) e. CC ) |
26 |
25
|
cjcjd |
|- ( ( ( F : X --> CC /\ X C_ RR ) /\ x e. X ) -> ( * ` ( * ` ( F ` x ) ) ) = ( F ` x ) ) |
27 |
26
|
mpteq2dva |
|- ( ( F : X --> CC /\ X C_ RR ) -> ( x e. X |-> ( * ` ( * ` ( F ` x ) ) ) ) = ( x e. X |-> ( F ` x ) ) ) |
28 |
25
|
cjcld |
|- ( ( ( F : X --> CC /\ X C_ RR ) /\ x e. X ) -> ( * ` ( F ` x ) ) e. CC ) |
29 |
|
simpl |
|- ( ( F : X --> CC /\ X C_ RR ) -> F : X --> CC ) |
30 |
29
|
feqmptd |
|- ( ( F : X --> CC /\ X C_ RR ) -> F = ( x e. X |-> ( F ` x ) ) ) |
31 |
11
|
a1i |
|- ( ( F : X --> CC /\ X C_ RR ) -> * : CC --> CC ) |
32 |
31
|
feqmptd |
|- ( ( F : X --> CC /\ X C_ RR ) -> * = ( y e. CC |-> ( * ` y ) ) ) |
33 |
|
fveq2 |
|- ( y = ( F ` x ) -> ( * ` y ) = ( * ` ( F ` x ) ) ) |
34 |
25 30 32 33
|
fmptco |
|- ( ( F : X --> CC /\ X C_ RR ) -> ( * o. F ) = ( x e. X |-> ( * ` ( F ` x ) ) ) ) |
35 |
|
fveq2 |
|- ( y = ( * ` ( F ` x ) ) -> ( * ` y ) = ( * ` ( * ` ( F ` x ) ) ) ) |
36 |
28 34 32 35
|
fmptco |
|- ( ( F : X --> CC /\ X C_ RR ) -> ( * o. ( * o. F ) ) = ( x e. X |-> ( * ` ( * ` ( F ` x ) ) ) ) ) |
37 |
27 36 30
|
3eqtr4d |
|- ( ( F : X --> CC /\ X C_ RR ) -> ( * o. ( * o. F ) ) = F ) |
38 |
37
|
oveq2d |
|- ( ( F : X --> CC /\ X C_ RR ) -> ( RR _D ( * o. ( * o. F ) ) ) = ( RR _D F ) ) |
39 |
38
|
dmeqd |
|- ( ( F : X --> CC /\ X C_ RR ) -> dom ( RR _D ( * o. ( * o. F ) ) ) = dom ( RR _D F ) ) |
40 |
23 39
|
sseqtrd |
|- ( ( F : X --> CC /\ X C_ RR ) -> dom ( RR _D ( * o. F ) ) C_ dom ( RR _D F ) ) |
41 |
|
fvex |
|- ( * ` ( ( RR _D F ) ` x ) ) e. _V |
42 |
18 41
|
breldm |
|- ( x ( RR _D ( * o. F ) ) ( * ` ( ( RR _D F ) ` x ) ) -> x e. dom ( RR _D ( * o. F ) ) ) |
43 |
7 42
|
syl |
|- ( ( ( F : X --> CC /\ X C_ RR ) /\ x e. dom ( RR _D F ) ) -> x e. dom ( RR _D ( * o. F ) ) ) |
44 |
40 43
|
eqelssd |
|- ( ( F : X --> CC /\ X C_ RR ) -> dom ( RR _D ( * o. F ) ) = dom ( RR _D F ) ) |
45 |
44
|
feq2d |
|- ( ( F : X --> CC /\ X C_ RR ) -> ( ( RR _D ( * o. F ) ) : dom ( RR _D ( * o. F ) ) --> CC <-> ( RR _D ( * o. F ) ) : dom ( RR _D F ) --> CC ) ) |
46 |
1 45
|
mpbii |
|- ( ( F : X --> CC /\ X C_ RR ) -> ( RR _D ( * o. F ) ) : dom ( RR _D F ) --> CC ) |
47 |
46
|
feqmptd |
|- ( ( F : X --> CC /\ X C_ RR ) -> ( RR _D ( * o. F ) ) = ( x e. dom ( RR _D F ) |-> ( ( RR _D ( * o. F ) ) ` x ) ) ) |
48 |
|
dvf |
|- ( RR _D F ) : dom ( RR _D F ) --> CC |
49 |
48
|
ffvelrni |
|- ( x e. dom ( RR _D F ) -> ( ( RR _D F ) ` x ) e. CC ) |
50 |
49
|
adantl |
|- ( ( ( F : X --> CC /\ X C_ RR ) /\ x e. dom ( RR _D F ) ) -> ( ( RR _D F ) ` x ) e. CC ) |
51 |
48
|
a1i |
|- ( ( F : X --> CC /\ X C_ RR ) -> ( RR _D F ) : dom ( RR _D F ) --> CC ) |
52 |
51
|
feqmptd |
|- ( ( F : X --> CC /\ X C_ RR ) -> ( RR _D F ) = ( x e. dom ( RR _D F ) |-> ( ( RR _D F ) ` x ) ) ) |
53 |
|
fveq2 |
|- ( y = ( ( RR _D F ) ` x ) -> ( * ` y ) = ( * ` ( ( RR _D F ) ` x ) ) ) |
54 |
50 52 32 53
|
fmptco |
|- ( ( F : X --> CC /\ X C_ RR ) -> ( * o. ( RR _D F ) ) = ( x e. dom ( RR _D F ) |-> ( * ` ( ( RR _D F ) ` x ) ) ) ) |
55 |
10 47 54
|
3eqtr4d |
|- ( ( F : X --> CC /\ X C_ RR ) -> ( RR _D ( * o. F ) ) = ( * o. ( RR _D F ) ) ) |