Step |
Hyp |
Ref |
Expression |
1 |
|
dvcj.f |
|- ( ph -> F : X --> CC ) |
2 |
|
dvcj.x |
|- ( ph -> X C_ RR ) |
3 |
|
dvcj.c |
|- ( ph -> C e. dom ( RR _D F ) ) |
4 |
|
ax-resscn |
|- RR C_ CC |
5 |
4
|
a1i |
|- ( ph -> RR C_ CC ) |
6 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
7 |
6
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
8 |
5 1 2 7 6
|
dvbssntr |
|- ( ph -> dom ( RR _D F ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` X ) ) |
9 |
8 3
|
sseldd |
|- ( ph -> C e. ( ( int ` ( topGen ` ran (,) ) ) ` X ) ) |
10 |
2 4
|
sstrdi |
|- ( ph -> X C_ CC ) |
11 |
4
|
a1i |
|- ( ( F : X --> CC /\ X C_ RR ) -> RR C_ CC ) |
12 |
|
simpl |
|- ( ( F : X --> CC /\ X C_ RR ) -> F : X --> CC ) |
13 |
|
simpr |
|- ( ( F : X --> CC /\ X C_ RR ) -> X C_ RR ) |
14 |
11 12 13
|
dvbss |
|- ( ( F : X --> CC /\ X C_ RR ) -> dom ( RR _D F ) C_ X ) |
15 |
1 2 14
|
syl2anc |
|- ( ph -> dom ( RR _D F ) C_ X ) |
16 |
15 3
|
sseldd |
|- ( ph -> C e. X ) |
17 |
1 10 16
|
dvlem |
|- ( ( ph /\ x e. ( X \ { C } ) ) -> ( ( ( F ` x ) - ( F ` C ) ) / ( x - C ) ) e. CC ) |
18 |
17
|
fmpttd |
|- ( ph -> ( x e. ( X \ { C } ) |-> ( ( ( F ` x ) - ( F ` C ) ) / ( x - C ) ) ) : ( X \ { C } ) --> CC ) |
19 |
|
ssidd |
|- ( ph -> CC C_ CC ) |
20 |
6
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
21 |
20
|
toponrestid |
|- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
22 |
|
dvf |
|- ( RR _D F ) : dom ( RR _D F ) --> CC |
23 |
|
ffun |
|- ( ( RR _D F ) : dom ( RR _D F ) --> CC -> Fun ( RR _D F ) ) |
24 |
|
funfvbrb |
|- ( Fun ( RR _D F ) -> ( C e. dom ( RR _D F ) <-> C ( RR _D F ) ( ( RR _D F ) ` C ) ) ) |
25 |
22 23 24
|
mp2b |
|- ( C e. dom ( RR _D F ) <-> C ( RR _D F ) ( ( RR _D F ) ` C ) ) |
26 |
3 25
|
sylib |
|- ( ph -> C ( RR _D F ) ( ( RR _D F ) ` C ) ) |
27 |
|
eqid |
|- ( x e. ( X \ { C } ) |-> ( ( ( F ` x ) - ( F ` C ) ) / ( x - C ) ) ) = ( x e. ( X \ { C } ) |-> ( ( ( F ` x ) - ( F ` C ) ) / ( x - C ) ) ) |
28 |
7 6 27 5 1 2
|
eldv |
|- ( ph -> ( C ( RR _D F ) ( ( RR _D F ) ` C ) <-> ( C e. ( ( int ` ( topGen ` ran (,) ) ) ` X ) /\ ( ( RR _D F ) ` C ) e. ( ( x e. ( X \ { C } ) |-> ( ( ( F ` x ) - ( F ` C ) ) / ( x - C ) ) ) limCC C ) ) ) ) |
29 |
26 28
|
mpbid |
|- ( ph -> ( C e. ( ( int ` ( topGen ` ran (,) ) ) ` X ) /\ ( ( RR _D F ) ` C ) e. ( ( x e. ( X \ { C } ) |-> ( ( ( F ` x ) - ( F ` C ) ) / ( x - C ) ) ) limCC C ) ) ) |
30 |
29
|
simprd |
|- ( ph -> ( ( RR _D F ) ` C ) e. ( ( x e. ( X \ { C } ) |-> ( ( ( F ` x ) - ( F ` C ) ) / ( x - C ) ) ) limCC C ) ) |
31 |
|
cjcncf |
|- * e. ( CC -cn-> CC ) |
32 |
6
|
cncfcn1 |
|- ( CC -cn-> CC ) = ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) |
33 |
31 32
|
eleqtri |
|- * e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) |
34 |
22
|
ffvelrni |
|- ( C e. dom ( RR _D F ) -> ( ( RR _D F ) ` C ) e. CC ) |
35 |
3 34
|
syl |
|- ( ph -> ( ( RR _D F ) ` C ) e. CC ) |
36 |
|
unicntop |
|- CC = U. ( TopOpen ` CCfld ) |
37 |
36
|
cncnpi |
|- ( ( * e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) /\ ( ( RR _D F ) ` C ) e. CC ) -> * e. ( ( ( TopOpen ` CCfld ) CnP ( TopOpen ` CCfld ) ) ` ( ( RR _D F ) ` C ) ) ) |
38 |
33 35 37
|
sylancr |
|- ( ph -> * e. ( ( ( TopOpen ` CCfld ) CnP ( TopOpen ` CCfld ) ) ` ( ( RR _D F ) ` C ) ) ) |
39 |
18 19 6 21 30 38
|
limccnp |
|- ( ph -> ( * ` ( ( RR _D F ) ` C ) ) e. ( ( * o. ( x e. ( X \ { C } ) |-> ( ( ( F ` x ) - ( F ` C ) ) / ( x - C ) ) ) ) limCC C ) ) |
40 |
|
cjf |
|- * : CC --> CC |
41 |
40
|
a1i |
|- ( ph -> * : CC --> CC ) |
42 |
41 17
|
cofmpt |
|- ( ph -> ( * o. ( x e. ( X \ { C } ) |-> ( ( ( F ` x ) - ( F ` C ) ) / ( x - C ) ) ) ) = ( x e. ( X \ { C } ) |-> ( * ` ( ( ( F ` x ) - ( F ` C ) ) / ( x - C ) ) ) ) ) |
43 |
1
|
adantr |
|- ( ( ph /\ x e. ( X \ { C } ) ) -> F : X --> CC ) |
44 |
|
eldifi |
|- ( x e. ( X \ { C } ) -> x e. X ) |
45 |
44
|
adantl |
|- ( ( ph /\ x e. ( X \ { C } ) ) -> x e. X ) |
46 |
43 45
|
ffvelrnd |
|- ( ( ph /\ x e. ( X \ { C } ) ) -> ( F ` x ) e. CC ) |
47 |
1 16
|
ffvelrnd |
|- ( ph -> ( F ` C ) e. CC ) |
48 |
47
|
adantr |
|- ( ( ph /\ x e. ( X \ { C } ) ) -> ( F ` C ) e. CC ) |
49 |
46 48
|
subcld |
|- ( ( ph /\ x e. ( X \ { C } ) ) -> ( ( F ` x ) - ( F ` C ) ) e. CC ) |
50 |
2
|
sselda |
|- ( ( ph /\ x e. X ) -> x e. RR ) |
51 |
44 50
|
sylan2 |
|- ( ( ph /\ x e. ( X \ { C } ) ) -> x e. RR ) |
52 |
2 16
|
sseldd |
|- ( ph -> C e. RR ) |
53 |
52
|
adantr |
|- ( ( ph /\ x e. ( X \ { C } ) ) -> C e. RR ) |
54 |
51 53
|
resubcld |
|- ( ( ph /\ x e. ( X \ { C } ) ) -> ( x - C ) e. RR ) |
55 |
54
|
recnd |
|- ( ( ph /\ x e. ( X \ { C } ) ) -> ( x - C ) e. CC ) |
56 |
51
|
recnd |
|- ( ( ph /\ x e. ( X \ { C } ) ) -> x e. CC ) |
57 |
53
|
recnd |
|- ( ( ph /\ x e. ( X \ { C } ) ) -> C e. CC ) |
58 |
|
eldifsni |
|- ( x e. ( X \ { C } ) -> x =/= C ) |
59 |
58
|
adantl |
|- ( ( ph /\ x e. ( X \ { C } ) ) -> x =/= C ) |
60 |
56 57 59
|
subne0d |
|- ( ( ph /\ x e. ( X \ { C } ) ) -> ( x - C ) =/= 0 ) |
61 |
49 55 60
|
cjdivd |
|- ( ( ph /\ x e. ( X \ { C } ) ) -> ( * ` ( ( ( F ` x ) - ( F ` C ) ) / ( x - C ) ) ) = ( ( * ` ( ( F ` x ) - ( F ` C ) ) ) / ( * ` ( x - C ) ) ) ) |
62 |
|
cjsub |
|- ( ( ( F ` x ) e. CC /\ ( F ` C ) e. CC ) -> ( * ` ( ( F ` x ) - ( F ` C ) ) ) = ( ( * ` ( F ` x ) ) - ( * ` ( F ` C ) ) ) ) |
63 |
46 48 62
|
syl2anc |
|- ( ( ph /\ x e. ( X \ { C } ) ) -> ( * ` ( ( F ` x ) - ( F ` C ) ) ) = ( ( * ` ( F ` x ) ) - ( * ` ( F ` C ) ) ) ) |
64 |
|
fvco3 |
|- ( ( F : X --> CC /\ x e. X ) -> ( ( * o. F ) ` x ) = ( * ` ( F ` x ) ) ) |
65 |
1 44 64
|
syl2an |
|- ( ( ph /\ x e. ( X \ { C } ) ) -> ( ( * o. F ) ` x ) = ( * ` ( F ` x ) ) ) |
66 |
|
fvco3 |
|- ( ( F : X --> CC /\ C e. X ) -> ( ( * o. F ) ` C ) = ( * ` ( F ` C ) ) ) |
67 |
1 16 66
|
syl2anc |
|- ( ph -> ( ( * o. F ) ` C ) = ( * ` ( F ` C ) ) ) |
68 |
67
|
adantr |
|- ( ( ph /\ x e. ( X \ { C } ) ) -> ( ( * o. F ) ` C ) = ( * ` ( F ` C ) ) ) |
69 |
65 68
|
oveq12d |
|- ( ( ph /\ x e. ( X \ { C } ) ) -> ( ( ( * o. F ) ` x ) - ( ( * o. F ) ` C ) ) = ( ( * ` ( F ` x ) ) - ( * ` ( F ` C ) ) ) ) |
70 |
63 69
|
eqtr4d |
|- ( ( ph /\ x e. ( X \ { C } ) ) -> ( * ` ( ( F ` x ) - ( F ` C ) ) ) = ( ( ( * o. F ) ` x ) - ( ( * o. F ) ` C ) ) ) |
71 |
54
|
cjred |
|- ( ( ph /\ x e. ( X \ { C } ) ) -> ( * ` ( x - C ) ) = ( x - C ) ) |
72 |
70 71
|
oveq12d |
|- ( ( ph /\ x e. ( X \ { C } ) ) -> ( ( * ` ( ( F ` x ) - ( F ` C ) ) ) / ( * ` ( x - C ) ) ) = ( ( ( ( * o. F ) ` x ) - ( ( * o. F ) ` C ) ) / ( x - C ) ) ) |
73 |
61 72
|
eqtrd |
|- ( ( ph /\ x e. ( X \ { C } ) ) -> ( * ` ( ( ( F ` x ) - ( F ` C ) ) / ( x - C ) ) ) = ( ( ( ( * o. F ) ` x ) - ( ( * o. F ) ` C ) ) / ( x - C ) ) ) |
74 |
73
|
mpteq2dva |
|- ( ph -> ( x e. ( X \ { C } ) |-> ( * ` ( ( ( F ` x ) - ( F ` C ) ) / ( x - C ) ) ) ) = ( x e. ( X \ { C } ) |-> ( ( ( ( * o. F ) ` x ) - ( ( * o. F ) ` C ) ) / ( x - C ) ) ) ) |
75 |
42 74
|
eqtrd |
|- ( ph -> ( * o. ( x e. ( X \ { C } ) |-> ( ( ( F ` x ) - ( F ` C ) ) / ( x - C ) ) ) ) = ( x e. ( X \ { C } ) |-> ( ( ( ( * o. F ) ` x ) - ( ( * o. F ) ` C ) ) / ( x - C ) ) ) ) |
76 |
75
|
oveq1d |
|- ( ph -> ( ( * o. ( x e. ( X \ { C } ) |-> ( ( ( F ` x ) - ( F ` C ) ) / ( x - C ) ) ) ) limCC C ) = ( ( x e. ( X \ { C } ) |-> ( ( ( ( * o. F ) ` x ) - ( ( * o. F ) ` C ) ) / ( x - C ) ) ) limCC C ) ) |
77 |
39 76
|
eleqtrd |
|- ( ph -> ( * ` ( ( RR _D F ) ` C ) ) e. ( ( x e. ( X \ { C } ) |-> ( ( ( ( * o. F ) ` x ) - ( ( * o. F ) ` C ) ) / ( x - C ) ) ) limCC C ) ) |
78 |
|
eqid |
|- ( x e. ( X \ { C } ) |-> ( ( ( ( * o. F ) ` x ) - ( ( * o. F ) ` C ) ) / ( x - C ) ) ) = ( x e. ( X \ { C } ) |-> ( ( ( ( * o. F ) ` x ) - ( ( * o. F ) ` C ) ) / ( x - C ) ) ) |
79 |
|
fco |
|- ( ( * : CC --> CC /\ F : X --> CC ) -> ( * o. F ) : X --> CC ) |
80 |
40 1 79
|
sylancr |
|- ( ph -> ( * o. F ) : X --> CC ) |
81 |
7 6 78 5 80 2
|
eldv |
|- ( ph -> ( C ( RR _D ( * o. F ) ) ( * ` ( ( RR _D F ) ` C ) ) <-> ( C e. ( ( int ` ( topGen ` ran (,) ) ) ` X ) /\ ( * ` ( ( RR _D F ) ` C ) ) e. ( ( x e. ( X \ { C } ) |-> ( ( ( ( * o. F ) ` x ) - ( ( * o. F ) ` C ) ) / ( x - C ) ) ) limCC C ) ) ) ) |
82 |
9 77 81
|
mpbir2and |
|- ( ph -> C ( RR _D ( * o. F ) ) ( * ` ( ( RR _D F ) ` C ) ) ) |