Step |
Hyp |
Ref |
Expression |
1 |
|
dvcl.s |
|- ( ph -> S C_ CC ) |
2 |
|
dvcl.f |
|- ( ph -> F : A --> CC ) |
3 |
|
dvcl.a |
|- ( ph -> A C_ S ) |
4 |
|
limccl |
|- ( ( z e. ( A \ { B } ) |-> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) limCC B ) C_ CC |
5 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t S ) = ( ( TopOpen ` CCfld ) |`t S ) |
6 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
7 |
|
eqid |
|- ( z e. ( A \ { B } ) |-> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) = ( z e. ( A \ { B } ) |-> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) |
8 |
5 6 7 1 2 3
|
eldv |
|- ( ph -> ( B ( S _D F ) C <-> ( B e. ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` A ) /\ C e. ( ( z e. ( A \ { B } ) |-> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) limCC B ) ) ) ) |
9 |
8
|
simplbda |
|- ( ( ph /\ B ( S _D F ) C ) -> C e. ( ( z e. ( A \ { B } ) |-> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) limCC B ) ) |
10 |
4 9
|
sselid |
|- ( ( ph /\ B ( S _D F ) C ) -> C e. CC ) |