Step |
Hyp |
Ref |
Expression |
1 |
|
dvcmul.s |
|- ( ph -> S e. { RR , CC } ) |
2 |
|
dvcmul.f |
|- ( ph -> F : X --> CC ) |
3 |
|
dvcmul.a |
|- ( ph -> A e. CC ) |
4 |
|
dvcmul.x |
|- ( ph -> X C_ S ) |
5 |
|
dvcmul.c |
|- ( ph -> C e. dom ( S _D F ) ) |
6 |
|
fconst6g |
|- ( A e. CC -> ( S X. { A } ) : S --> CC ) |
7 |
3 6
|
syl |
|- ( ph -> ( S X. { A } ) : S --> CC ) |
8 |
|
ssidd |
|- ( ph -> S C_ S ) |
9 |
|
recnprss |
|- ( S e. { RR , CC } -> S C_ CC ) |
10 |
1 9
|
syl |
|- ( ph -> S C_ CC ) |
11 |
10 2 4
|
dvbss |
|- ( ph -> dom ( S _D F ) C_ X ) |
12 |
11 5
|
sseldd |
|- ( ph -> C e. X ) |
13 |
4 12
|
sseldd |
|- ( ph -> C e. S ) |
14 |
|
fconst6g |
|- ( A e. CC -> ( CC X. { A } ) : CC --> CC ) |
15 |
3 14
|
syl |
|- ( ph -> ( CC X. { A } ) : CC --> CC ) |
16 |
|
ssidd |
|- ( ph -> CC C_ CC ) |
17 |
|
dvconst |
|- ( A e. CC -> ( CC _D ( CC X. { A } ) ) = ( CC X. { 0 } ) ) |
18 |
3 17
|
syl |
|- ( ph -> ( CC _D ( CC X. { A } ) ) = ( CC X. { 0 } ) ) |
19 |
18
|
dmeqd |
|- ( ph -> dom ( CC _D ( CC X. { A } ) ) = dom ( CC X. { 0 } ) ) |
20 |
|
c0ex |
|- 0 e. _V |
21 |
20
|
fconst |
|- ( CC X. { 0 } ) : CC --> { 0 } |
22 |
21
|
fdmi |
|- dom ( CC X. { 0 } ) = CC |
23 |
19 22
|
eqtrdi |
|- ( ph -> dom ( CC _D ( CC X. { A } ) ) = CC ) |
24 |
10 23
|
sseqtrrd |
|- ( ph -> S C_ dom ( CC _D ( CC X. { A } ) ) ) |
25 |
|
dvres3 |
|- ( ( ( S e. { RR , CC } /\ ( CC X. { A } ) : CC --> CC ) /\ ( CC C_ CC /\ S C_ dom ( CC _D ( CC X. { A } ) ) ) ) -> ( S _D ( ( CC X. { A } ) |` S ) ) = ( ( CC _D ( CC X. { A } ) ) |` S ) ) |
26 |
1 15 16 24 25
|
syl22anc |
|- ( ph -> ( S _D ( ( CC X. { A } ) |` S ) ) = ( ( CC _D ( CC X. { A } ) ) |` S ) ) |
27 |
|
xpssres |
|- ( S C_ CC -> ( ( CC X. { A } ) |` S ) = ( S X. { A } ) ) |
28 |
10 27
|
syl |
|- ( ph -> ( ( CC X. { A } ) |` S ) = ( S X. { A } ) ) |
29 |
28
|
oveq2d |
|- ( ph -> ( S _D ( ( CC X. { A } ) |` S ) ) = ( S _D ( S X. { A } ) ) ) |
30 |
18
|
reseq1d |
|- ( ph -> ( ( CC _D ( CC X. { A } ) ) |` S ) = ( ( CC X. { 0 } ) |` S ) ) |
31 |
|
xpssres |
|- ( S C_ CC -> ( ( CC X. { 0 } ) |` S ) = ( S X. { 0 } ) ) |
32 |
10 31
|
syl |
|- ( ph -> ( ( CC X. { 0 } ) |` S ) = ( S X. { 0 } ) ) |
33 |
30 32
|
eqtrd |
|- ( ph -> ( ( CC _D ( CC X. { A } ) ) |` S ) = ( S X. { 0 } ) ) |
34 |
26 29 33
|
3eqtr3d |
|- ( ph -> ( S _D ( S X. { A } ) ) = ( S X. { 0 } ) ) |
35 |
20
|
fconst2 |
|- ( ( S _D ( S X. { A } ) ) : S --> { 0 } <-> ( S _D ( S X. { A } ) ) = ( S X. { 0 } ) ) |
36 |
34 35
|
sylibr |
|- ( ph -> ( S _D ( S X. { A } ) ) : S --> { 0 } ) |
37 |
36
|
fdmd |
|- ( ph -> dom ( S _D ( S X. { A } ) ) = S ) |
38 |
13 37
|
eleqtrrd |
|- ( ph -> C e. dom ( S _D ( S X. { A } ) ) ) |
39 |
7 8 2 4 1 38 5
|
dvmul |
|- ( ph -> ( ( S _D ( ( S X. { A } ) oF x. F ) ) ` C ) = ( ( ( ( S _D ( S X. { A } ) ) ` C ) x. ( F ` C ) ) + ( ( ( S _D F ) ` C ) x. ( ( S X. { A } ) ` C ) ) ) ) |
40 |
34
|
fveq1d |
|- ( ph -> ( ( S _D ( S X. { A } ) ) ` C ) = ( ( S X. { 0 } ) ` C ) ) |
41 |
20
|
fvconst2 |
|- ( C e. S -> ( ( S X. { 0 } ) ` C ) = 0 ) |
42 |
13 41
|
syl |
|- ( ph -> ( ( S X. { 0 } ) ` C ) = 0 ) |
43 |
40 42
|
eqtrd |
|- ( ph -> ( ( S _D ( S X. { A } ) ) ` C ) = 0 ) |
44 |
43
|
oveq1d |
|- ( ph -> ( ( ( S _D ( S X. { A } ) ) ` C ) x. ( F ` C ) ) = ( 0 x. ( F ` C ) ) ) |
45 |
2 12
|
ffvelrnd |
|- ( ph -> ( F ` C ) e. CC ) |
46 |
45
|
mul02d |
|- ( ph -> ( 0 x. ( F ` C ) ) = 0 ) |
47 |
44 46
|
eqtrd |
|- ( ph -> ( ( ( S _D ( S X. { A } ) ) ` C ) x. ( F ` C ) ) = 0 ) |
48 |
|
fvconst2g |
|- ( ( A e. CC /\ C e. S ) -> ( ( S X. { A } ) ` C ) = A ) |
49 |
3 13 48
|
syl2anc |
|- ( ph -> ( ( S X. { A } ) ` C ) = A ) |
50 |
49
|
oveq2d |
|- ( ph -> ( ( ( S _D F ) ` C ) x. ( ( S X. { A } ) ` C ) ) = ( ( ( S _D F ) ` C ) x. A ) ) |
51 |
|
dvfg |
|- ( S e. { RR , CC } -> ( S _D F ) : dom ( S _D F ) --> CC ) |
52 |
1 51
|
syl |
|- ( ph -> ( S _D F ) : dom ( S _D F ) --> CC ) |
53 |
52 5
|
ffvelrnd |
|- ( ph -> ( ( S _D F ) ` C ) e. CC ) |
54 |
53 3
|
mulcomd |
|- ( ph -> ( ( ( S _D F ) ` C ) x. A ) = ( A x. ( ( S _D F ) ` C ) ) ) |
55 |
50 54
|
eqtrd |
|- ( ph -> ( ( ( S _D F ) ` C ) x. ( ( S X. { A } ) ` C ) ) = ( A x. ( ( S _D F ) ` C ) ) ) |
56 |
47 55
|
oveq12d |
|- ( ph -> ( ( ( ( S _D ( S X. { A } ) ) ` C ) x. ( F ` C ) ) + ( ( ( S _D F ) ` C ) x. ( ( S X. { A } ) ` C ) ) ) = ( 0 + ( A x. ( ( S _D F ) ` C ) ) ) ) |
57 |
3 53
|
mulcld |
|- ( ph -> ( A x. ( ( S _D F ) ` C ) ) e. CC ) |
58 |
57
|
addid2d |
|- ( ph -> ( 0 + ( A x. ( ( S _D F ) ` C ) ) ) = ( A x. ( ( S _D F ) ` C ) ) ) |
59 |
39 56 58
|
3eqtrd |
|- ( ph -> ( ( S _D ( ( S X. { A } ) oF x. F ) ) ` C ) = ( A x. ( ( S _D F ) ` C ) ) ) |