| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvcmul.s |  |-  ( ph -> S e. { RR , CC } ) | 
						
							| 2 |  | dvcmul.f |  |-  ( ph -> F : X --> CC ) | 
						
							| 3 |  | dvcmul.a |  |-  ( ph -> A e. CC ) | 
						
							| 4 |  | dvcmulf.df |  |-  ( ph -> dom ( S _D F ) = X ) | 
						
							| 5 |  | fconstg |  |-  ( A e. CC -> ( X X. { A } ) : X --> { A } ) | 
						
							| 6 | 3 5 | syl |  |-  ( ph -> ( X X. { A } ) : X --> { A } ) | 
						
							| 7 | 3 | snssd |  |-  ( ph -> { A } C_ CC ) | 
						
							| 8 | 6 7 | fssd |  |-  ( ph -> ( X X. { A } ) : X --> CC ) | 
						
							| 9 |  | c0ex |  |-  0 e. _V | 
						
							| 10 | 9 | fconst |  |-  ( X X. { 0 } ) : X --> { 0 } | 
						
							| 11 |  | recnprss |  |-  ( S e. { RR , CC } -> S C_ CC ) | 
						
							| 12 | 1 11 | syl |  |-  ( ph -> S C_ CC ) | 
						
							| 13 |  | fconstg |  |-  ( A e. CC -> ( S X. { A } ) : S --> { A } ) | 
						
							| 14 | 3 13 | syl |  |-  ( ph -> ( S X. { A } ) : S --> { A } ) | 
						
							| 15 | 14 7 | fssd |  |-  ( ph -> ( S X. { A } ) : S --> CC ) | 
						
							| 16 |  | ssidd |  |-  ( ph -> S C_ S ) | 
						
							| 17 |  | dvbsss |  |-  dom ( S _D F ) C_ S | 
						
							| 18 | 17 | a1i |  |-  ( ph -> dom ( S _D F ) C_ S ) | 
						
							| 19 | 4 18 | eqsstrrd |  |-  ( ph -> X C_ S ) | 
						
							| 20 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 21 |  | eqid |  |-  ( ( TopOpen ` CCfld ) |`t S ) = ( ( TopOpen ` CCfld ) |`t S ) | 
						
							| 22 | 20 21 | dvres |  |-  ( ( ( S C_ CC /\ ( S X. { A } ) : S --> CC ) /\ ( S C_ S /\ X C_ S ) ) -> ( S _D ( ( S X. { A } ) |` X ) ) = ( ( S _D ( S X. { A } ) ) |` ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` X ) ) ) | 
						
							| 23 | 12 15 16 19 22 | syl22anc |  |-  ( ph -> ( S _D ( ( S X. { A } ) |` X ) ) = ( ( S _D ( S X. { A } ) ) |` ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` X ) ) ) | 
						
							| 24 | 19 | resmptd |  |-  ( ph -> ( ( x e. S |-> A ) |` X ) = ( x e. X |-> A ) ) | 
						
							| 25 |  | fconstmpt |  |-  ( S X. { A } ) = ( x e. S |-> A ) | 
						
							| 26 | 25 | reseq1i |  |-  ( ( S X. { A } ) |` X ) = ( ( x e. S |-> A ) |` X ) | 
						
							| 27 |  | fconstmpt |  |-  ( X X. { A } ) = ( x e. X |-> A ) | 
						
							| 28 | 24 26 27 | 3eqtr4g |  |-  ( ph -> ( ( S X. { A } ) |` X ) = ( X X. { A } ) ) | 
						
							| 29 | 28 | oveq2d |  |-  ( ph -> ( S _D ( ( S X. { A } ) |` X ) ) = ( S _D ( X X. { A } ) ) ) | 
						
							| 30 | 19 | resmptd |  |-  ( ph -> ( ( x e. S |-> 0 ) |` X ) = ( x e. X |-> 0 ) ) | 
						
							| 31 |  | fconstg |  |-  ( A e. CC -> ( CC X. { A } ) : CC --> { A } ) | 
						
							| 32 | 3 31 | syl |  |-  ( ph -> ( CC X. { A } ) : CC --> { A } ) | 
						
							| 33 | 32 7 | fssd |  |-  ( ph -> ( CC X. { A } ) : CC --> CC ) | 
						
							| 34 |  | ssidd |  |-  ( ph -> CC C_ CC ) | 
						
							| 35 |  | dvconst |  |-  ( A e. CC -> ( CC _D ( CC X. { A } ) ) = ( CC X. { 0 } ) ) | 
						
							| 36 | 3 35 | syl |  |-  ( ph -> ( CC _D ( CC X. { A } ) ) = ( CC X. { 0 } ) ) | 
						
							| 37 | 36 | dmeqd |  |-  ( ph -> dom ( CC _D ( CC X. { A } ) ) = dom ( CC X. { 0 } ) ) | 
						
							| 38 | 9 | fconst |  |-  ( CC X. { 0 } ) : CC --> { 0 } | 
						
							| 39 | 38 | fdmi |  |-  dom ( CC X. { 0 } ) = CC | 
						
							| 40 | 37 39 | eqtrdi |  |-  ( ph -> dom ( CC _D ( CC X. { A } ) ) = CC ) | 
						
							| 41 | 12 40 | sseqtrrd |  |-  ( ph -> S C_ dom ( CC _D ( CC X. { A } ) ) ) | 
						
							| 42 |  | dvres3 |  |-  ( ( ( S e. { RR , CC } /\ ( CC X. { A } ) : CC --> CC ) /\ ( CC C_ CC /\ S C_ dom ( CC _D ( CC X. { A } ) ) ) ) -> ( S _D ( ( CC X. { A } ) |` S ) ) = ( ( CC _D ( CC X. { A } ) ) |` S ) ) | 
						
							| 43 | 1 33 34 41 42 | syl22anc |  |-  ( ph -> ( S _D ( ( CC X. { A } ) |` S ) ) = ( ( CC _D ( CC X. { A } ) ) |` S ) ) | 
						
							| 44 |  | xpssres |  |-  ( S C_ CC -> ( ( CC X. { A } ) |` S ) = ( S X. { A } ) ) | 
						
							| 45 | 12 44 | syl |  |-  ( ph -> ( ( CC X. { A } ) |` S ) = ( S X. { A } ) ) | 
						
							| 46 | 45 | oveq2d |  |-  ( ph -> ( S _D ( ( CC X. { A } ) |` S ) ) = ( S _D ( S X. { A } ) ) ) | 
						
							| 47 | 36 | reseq1d |  |-  ( ph -> ( ( CC _D ( CC X. { A } ) ) |` S ) = ( ( CC X. { 0 } ) |` S ) ) | 
						
							| 48 |  | xpssres |  |-  ( S C_ CC -> ( ( CC X. { 0 } ) |` S ) = ( S X. { 0 } ) ) | 
						
							| 49 | 12 48 | syl |  |-  ( ph -> ( ( CC X. { 0 } ) |` S ) = ( S X. { 0 } ) ) | 
						
							| 50 | 47 49 | eqtrd |  |-  ( ph -> ( ( CC _D ( CC X. { A } ) ) |` S ) = ( S X. { 0 } ) ) | 
						
							| 51 | 43 46 50 | 3eqtr3d |  |-  ( ph -> ( S _D ( S X. { A } ) ) = ( S X. { 0 } ) ) | 
						
							| 52 |  | fconstmpt |  |-  ( S X. { 0 } ) = ( x e. S |-> 0 ) | 
						
							| 53 | 51 52 | eqtrdi |  |-  ( ph -> ( S _D ( S X. { A } ) ) = ( x e. S |-> 0 ) ) | 
						
							| 54 | 20 | cnfldtopon |  |-  ( TopOpen ` CCfld ) e. ( TopOn ` CC ) | 
						
							| 55 |  | resttopon |  |-  ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ S C_ CC ) -> ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) ) | 
						
							| 56 | 54 12 55 | sylancr |  |-  ( ph -> ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) ) | 
						
							| 57 |  | topontop |  |-  ( ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) -> ( ( TopOpen ` CCfld ) |`t S ) e. Top ) | 
						
							| 58 | 56 57 | syl |  |-  ( ph -> ( ( TopOpen ` CCfld ) |`t S ) e. Top ) | 
						
							| 59 |  | toponuni |  |-  ( ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) -> S = U. ( ( TopOpen ` CCfld ) |`t S ) ) | 
						
							| 60 | 56 59 | syl |  |-  ( ph -> S = U. ( ( TopOpen ` CCfld ) |`t S ) ) | 
						
							| 61 | 19 60 | sseqtrd |  |-  ( ph -> X C_ U. ( ( TopOpen ` CCfld ) |`t S ) ) | 
						
							| 62 |  | eqid |  |-  U. ( ( TopOpen ` CCfld ) |`t S ) = U. ( ( TopOpen ` CCfld ) |`t S ) | 
						
							| 63 | 62 | ntrss2 |  |-  ( ( ( ( TopOpen ` CCfld ) |`t S ) e. Top /\ X C_ U. ( ( TopOpen ` CCfld ) |`t S ) ) -> ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` X ) C_ X ) | 
						
							| 64 | 58 61 63 | syl2anc |  |-  ( ph -> ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` X ) C_ X ) | 
						
							| 65 | 12 2 19 21 20 | dvbssntr |  |-  ( ph -> dom ( S _D F ) C_ ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` X ) ) | 
						
							| 66 | 4 65 | eqsstrrd |  |-  ( ph -> X C_ ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` X ) ) | 
						
							| 67 | 64 66 | eqssd |  |-  ( ph -> ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` X ) = X ) | 
						
							| 68 | 53 67 | reseq12d |  |-  ( ph -> ( ( S _D ( S X. { A } ) ) |` ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` X ) ) = ( ( x e. S |-> 0 ) |` X ) ) | 
						
							| 69 |  | fconstmpt |  |-  ( X X. { 0 } ) = ( x e. X |-> 0 ) | 
						
							| 70 | 69 | a1i |  |-  ( ph -> ( X X. { 0 } ) = ( x e. X |-> 0 ) ) | 
						
							| 71 | 30 68 70 | 3eqtr4d |  |-  ( ph -> ( ( S _D ( S X. { A } ) ) |` ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` X ) ) = ( X X. { 0 } ) ) | 
						
							| 72 | 23 29 71 | 3eqtr3d |  |-  ( ph -> ( S _D ( X X. { A } ) ) = ( X X. { 0 } ) ) | 
						
							| 73 | 72 | feq1d |  |-  ( ph -> ( ( S _D ( X X. { A } ) ) : X --> { 0 } <-> ( X X. { 0 } ) : X --> { 0 } ) ) | 
						
							| 74 | 10 73 | mpbiri |  |-  ( ph -> ( S _D ( X X. { A } ) ) : X --> { 0 } ) | 
						
							| 75 | 74 | fdmd |  |-  ( ph -> dom ( S _D ( X X. { A } ) ) = X ) | 
						
							| 76 | 1 8 2 75 4 | dvmulf |  |-  ( ph -> ( S _D ( ( X X. { A } ) oF x. F ) ) = ( ( ( S _D ( X X. { A } ) ) oF x. F ) oF + ( ( S _D F ) oF x. ( X X. { A } ) ) ) ) | 
						
							| 77 |  | sseqin2 |  |-  ( X C_ S <-> ( S i^i X ) = X ) | 
						
							| 78 | 19 77 | sylib |  |-  ( ph -> ( S i^i X ) = X ) | 
						
							| 79 | 78 | mpteq1d |  |-  ( ph -> ( x e. ( S i^i X ) |-> ( A x. ( F ` x ) ) ) = ( x e. X |-> ( A x. ( F ` x ) ) ) ) | 
						
							| 80 | 14 | ffnd |  |-  ( ph -> ( S X. { A } ) Fn S ) | 
						
							| 81 | 2 | ffnd |  |-  ( ph -> F Fn X ) | 
						
							| 82 | 1 19 | ssexd |  |-  ( ph -> X e. _V ) | 
						
							| 83 |  | eqid |  |-  ( S i^i X ) = ( S i^i X ) | 
						
							| 84 |  | fvconst2g |  |-  ( ( A e. CC /\ x e. S ) -> ( ( S X. { A } ) ` x ) = A ) | 
						
							| 85 | 3 84 | sylan |  |-  ( ( ph /\ x e. S ) -> ( ( S X. { A } ) ` x ) = A ) | 
						
							| 86 |  | eqidd |  |-  ( ( ph /\ x e. X ) -> ( F ` x ) = ( F ` x ) ) | 
						
							| 87 | 80 81 1 82 83 85 86 | offval |  |-  ( ph -> ( ( S X. { A } ) oF x. F ) = ( x e. ( S i^i X ) |-> ( A x. ( F ` x ) ) ) ) | 
						
							| 88 | 6 | ffnd |  |-  ( ph -> ( X X. { A } ) Fn X ) | 
						
							| 89 |  | inidm |  |-  ( X i^i X ) = X | 
						
							| 90 |  | fvconst2g |  |-  ( ( A e. CC /\ x e. X ) -> ( ( X X. { A } ) ` x ) = A ) | 
						
							| 91 | 3 90 | sylan |  |-  ( ( ph /\ x e. X ) -> ( ( X X. { A } ) ` x ) = A ) | 
						
							| 92 | 88 81 82 82 89 91 86 | offval |  |-  ( ph -> ( ( X X. { A } ) oF x. F ) = ( x e. X |-> ( A x. ( F ` x ) ) ) ) | 
						
							| 93 | 79 87 92 | 3eqtr4d |  |-  ( ph -> ( ( S X. { A } ) oF x. F ) = ( ( X X. { A } ) oF x. F ) ) | 
						
							| 94 | 93 | oveq2d |  |-  ( ph -> ( S _D ( ( S X. { A } ) oF x. F ) ) = ( S _D ( ( X X. { A } ) oF x. F ) ) ) | 
						
							| 95 | 78 | mpteq1d |  |-  ( ph -> ( x e. ( S i^i X ) |-> ( A x. ( ( S _D F ) ` x ) ) ) = ( x e. X |-> ( A x. ( ( S _D F ) ` x ) ) ) ) | 
						
							| 96 |  | dvfg |  |-  ( S e. { RR , CC } -> ( S _D F ) : dom ( S _D F ) --> CC ) | 
						
							| 97 | 1 96 | syl |  |-  ( ph -> ( S _D F ) : dom ( S _D F ) --> CC ) | 
						
							| 98 | 4 | feq2d |  |-  ( ph -> ( ( S _D F ) : dom ( S _D F ) --> CC <-> ( S _D F ) : X --> CC ) ) | 
						
							| 99 | 97 98 | mpbid |  |-  ( ph -> ( S _D F ) : X --> CC ) | 
						
							| 100 | 99 | ffnd |  |-  ( ph -> ( S _D F ) Fn X ) | 
						
							| 101 |  | eqidd |  |-  ( ( ph /\ x e. X ) -> ( ( S _D F ) ` x ) = ( ( S _D F ) ` x ) ) | 
						
							| 102 | 80 100 1 82 83 85 101 | offval |  |-  ( ph -> ( ( S X. { A } ) oF x. ( S _D F ) ) = ( x e. ( S i^i X ) |-> ( A x. ( ( S _D F ) ` x ) ) ) ) | 
						
							| 103 |  | 0cnd |  |-  ( ( ph /\ x e. X ) -> 0 e. CC ) | 
						
							| 104 |  | ovexd |  |-  ( ( ph /\ x e. X ) -> ( ( ( S _D F ) ` x ) x. A ) e. _V ) | 
						
							| 105 | 72 | oveq1d |  |-  ( ph -> ( ( S _D ( X X. { A } ) ) oF x. F ) = ( ( X X. { 0 } ) oF x. F ) ) | 
						
							| 106 |  | 0cnd |  |-  ( ph -> 0 e. CC ) | 
						
							| 107 |  | mul02 |  |-  ( x e. CC -> ( 0 x. x ) = 0 ) | 
						
							| 108 | 107 | adantl |  |-  ( ( ph /\ x e. CC ) -> ( 0 x. x ) = 0 ) | 
						
							| 109 | 82 2 106 106 108 | caofid2 |  |-  ( ph -> ( ( X X. { 0 } ) oF x. F ) = ( X X. { 0 } ) ) | 
						
							| 110 | 105 109 | eqtrd |  |-  ( ph -> ( ( S _D ( X X. { A } ) ) oF x. F ) = ( X X. { 0 } ) ) | 
						
							| 111 | 110 69 | eqtrdi |  |-  ( ph -> ( ( S _D ( X X. { A } ) ) oF x. F ) = ( x e. X |-> 0 ) ) | 
						
							| 112 |  | fvexd |  |-  ( ( ph /\ x e. X ) -> ( ( S _D F ) ` x ) e. _V ) | 
						
							| 113 | 3 | adantr |  |-  ( ( ph /\ x e. X ) -> A e. CC ) | 
						
							| 114 | 99 | feqmptd |  |-  ( ph -> ( S _D F ) = ( x e. X |-> ( ( S _D F ) ` x ) ) ) | 
						
							| 115 | 27 | a1i |  |-  ( ph -> ( X X. { A } ) = ( x e. X |-> A ) ) | 
						
							| 116 | 82 112 113 114 115 | offval2 |  |-  ( ph -> ( ( S _D F ) oF x. ( X X. { A } ) ) = ( x e. X |-> ( ( ( S _D F ) ` x ) x. A ) ) ) | 
						
							| 117 | 82 103 104 111 116 | offval2 |  |-  ( ph -> ( ( ( S _D ( X X. { A } ) ) oF x. F ) oF + ( ( S _D F ) oF x. ( X X. { A } ) ) ) = ( x e. X |-> ( 0 + ( ( ( S _D F ) ` x ) x. A ) ) ) ) | 
						
							| 118 | 99 | ffvelcdmda |  |-  ( ( ph /\ x e. X ) -> ( ( S _D F ) ` x ) e. CC ) | 
						
							| 119 | 118 113 | mulcld |  |-  ( ( ph /\ x e. X ) -> ( ( ( S _D F ) ` x ) x. A ) e. CC ) | 
						
							| 120 | 119 | addlidd |  |-  ( ( ph /\ x e. X ) -> ( 0 + ( ( ( S _D F ) ` x ) x. A ) ) = ( ( ( S _D F ) ` x ) x. A ) ) | 
						
							| 121 | 118 113 | mulcomd |  |-  ( ( ph /\ x e. X ) -> ( ( ( S _D F ) ` x ) x. A ) = ( A x. ( ( S _D F ) ` x ) ) ) | 
						
							| 122 | 120 121 | eqtrd |  |-  ( ( ph /\ x e. X ) -> ( 0 + ( ( ( S _D F ) ` x ) x. A ) ) = ( A x. ( ( S _D F ) ` x ) ) ) | 
						
							| 123 | 122 | mpteq2dva |  |-  ( ph -> ( x e. X |-> ( 0 + ( ( ( S _D F ) ` x ) x. A ) ) ) = ( x e. X |-> ( A x. ( ( S _D F ) ` x ) ) ) ) | 
						
							| 124 | 117 123 | eqtrd |  |-  ( ph -> ( ( ( S _D ( X X. { A } ) ) oF x. F ) oF + ( ( S _D F ) oF x. ( X X. { A } ) ) ) = ( x e. X |-> ( A x. ( ( S _D F ) ` x ) ) ) ) | 
						
							| 125 | 95 102 124 | 3eqtr4d |  |-  ( ph -> ( ( S X. { A } ) oF x. ( S _D F ) ) = ( ( ( S _D ( X X. { A } ) ) oF x. F ) oF + ( ( S _D F ) oF x. ( X X. { A } ) ) ) ) | 
						
							| 126 | 76 94 125 | 3eqtr4d |  |-  ( ph -> ( S _D ( ( S X. { A } ) oF x. F ) ) = ( ( S X. { A } ) oF x. ( S _D F ) ) ) |