Step |
Hyp |
Ref |
Expression |
1 |
|
simpl2 |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ dom ( S _D F ) = A ) -> F : A --> CC ) |
2 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t A ) = ( ( TopOpen ` CCfld ) |`t A ) |
3 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
4 |
2 3
|
dvcnp2 |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ x e. dom ( S _D F ) ) -> F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) ) |
5 |
4
|
ralrimiva |
|- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> A. x e. dom ( S _D F ) F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) ) |
6 |
|
raleq |
|- ( dom ( S _D F ) = A -> ( A. x e. dom ( S _D F ) F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) <-> A. x e. A F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) ) ) |
7 |
6
|
biimpd |
|- ( dom ( S _D F ) = A -> ( A. x e. dom ( S _D F ) F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) -> A. x e. A F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) ) ) |
8 |
5 7
|
mpan9 |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ dom ( S _D F ) = A ) -> A. x e. A F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) ) |
9 |
3
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
10 |
|
simpl3 |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ dom ( S _D F ) = A ) -> A C_ S ) |
11 |
|
simpl1 |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ dom ( S _D F ) = A ) -> S C_ CC ) |
12 |
10 11
|
sstrd |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ dom ( S _D F ) = A ) -> A C_ CC ) |
13 |
|
resttopon |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ A C_ CC ) -> ( ( TopOpen ` CCfld ) |`t A ) e. ( TopOn ` A ) ) |
14 |
9 12 13
|
sylancr |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ dom ( S _D F ) = A ) -> ( ( TopOpen ` CCfld ) |`t A ) e. ( TopOn ` A ) ) |
15 |
|
cncnp |
|- ( ( ( ( TopOpen ` CCfld ) |`t A ) e. ( TopOn ` A ) /\ ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) -> ( F e. ( ( ( TopOpen ` CCfld ) |`t A ) Cn ( TopOpen ` CCfld ) ) <-> ( F : A --> CC /\ A. x e. A F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) ) ) ) |
16 |
14 9 15
|
sylancl |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ dom ( S _D F ) = A ) -> ( F e. ( ( ( TopOpen ` CCfld ) |`t A ) Cn ( TopOpen ` CCfld ) ) <-> ( F : A --> CC /\ A. x e. A F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) ) ) ) |
17 |
1 8 16
|
mpbir2and |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ dom ( S _D F ) = A ) -> F e. ( ( ( TopOpen ` CCfld ) |`t A ) Cn ( TopOpen ` CCfld ) ) ) |
18 |
|
ssid |
|- CC C_ CC |
19 |
9
|
toponrestid |
|- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
20 |
3 2 19
|
cncfcn |
|- ( ( A C_ CC /\ CC C_ CC ) -> ( A -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t A ) Cn ( TopOpen ` CCfld ) ) ) |
21 |
12 18 20
|
sylancl |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ dom ( S _D F ) = A ) -> ( A -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t A ) Cn ( TopOpen ` CCfld ) ) ) |
22 |
17 21
|
eleqtrrd |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ dom ( S _D F ) = A ) -> F e. ( A -cn-> CC ) ) |