Step |
Hyp |
Ref |
Expression |
1 |
|
dvcnp.j |
|- J = ( K |`t A ) |
2 |
|
dvcnp.k |
|- K = ( TopOpen ` CCfld ) |
3 |
|
dvcnp.g |
|- G = ( z e. A |-> if ( z = B , ( ( S _D F ) ` B ) , ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) ) |
4 |
|
dvfg |
|- ( S e. { RR , CC } -> ( S _D F ) : dom ( S _D F ) --> CC ) |
5 |
4
|
3ad2ant1 |
|- ( ( S e. { RR , CC } /\ F : A --> CC /\ A C_ S ) -> ( S _D F ) : dom ( S _D F ) --> CC ) |
6 |
|
ffun |
|- ( ( S _D F ) : dom ( S _D F ) --> CC -> Fun ( S _D F ) ) |
7 |
|
funfvbrb |
|- ( Fun ( S _D F ) -> ( B e. dom ( S _D F ) <-> B ( S _D F ) ( ( S _D F ) ` B ) ) ) |
8 |
5 6 7
|
3syl |
|- ( ( S e. { RR , CC } /\ F : A --> CC /\ A C_ S ) -> ( B e. dom ( S _D F ) <-> B ( S _D F ) ( ( S _D F ) ` B ) ) ) |
9 |
|
eqid |
|- ( K |`t S ) = ( K |`t S ) |
10 |
|
eqid |
|- ( z e. ( A \ { B } ) |-> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) = ( z e. ( A \ { B } ) |-> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) |
11 |
|
recnprss |
|- ( S e. { RR , CC } -> S C_ CC ) |
12 |
11
|
3ad2ant1 |
|- ( ( S e. { RR , CC } /\ F : A --> CC /\ A C_ S ) -> S C_ CC ) |
13 |
|
simp2 |
|- ( ( S e. { RR , CC } /\ F : A --> CC /\ A C_ S ) -> F : A --> CC ) |
14 |
|
simp3 |
|- ( ( S e. { RR , CC } /\ F : A --> CC /\ A C_ S ) -> A C_ S ) |
15 |
9 2 10 12 13 14
|
eldv |
|- ( ( S e. { RR , CC } /\ F : A --> CC /\ A C_ S ) -> ( B ( S _D F ) ( ( S _D F ) ` B ) <-> ( B e. ( ( int ` ( K |`t S ) ) ` A ) /\ ( ( S _D F ) ` B ) e. ( ( z e. ( A \ { B } ) |-> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) limCC B ) ) ) ) |
16 |
8 15
|
bitrd |
|- ( ( S e. { RR , CC } /\ F : A --> CC /\ A C_ S ) -> ( B e. dom ( S _D F ) <-> ( B e. ( ( int ` ( K |`t S ) ) ` A ) /\ ( ( S _D F ) ` B ) e. ( ( z e. ( A \ { B } ) |-> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) limCC B ) ) ) ) |
17 |
16
|
simplbda |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC /\ A C_ S ) /\ B e. dom ( S _D F ) ) -> ( ( S _D F ) ` B ) e. ( ( z e. ( A \ { B } ) |-> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) limCC B ) ) |
18 |
14 12
|
sstrd |
|- ( ( S e. { RR , CC } /\ F : A --> CC /\ A C_ S ) -> A C_ CC ) |
19 |
18
|
adantr |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC /\ A C_ S ) /\ B e. dom ( S _D F ) ) -> A C_ CC ) |
20 |
12 13 14
|
dvbss |
|- ( ( S e. { RR , CC } /\ F : A --> CC /\ A C_ S ) -> dom ( S _D F ) C_ A ) |
21 |
20
|
sselda |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC /\ A C_ S ) /\ B e. dom ( S _D F ) ) -> B e. A ) |
22 |
|
eldifsn |
|- ( z e. ( A \ { B } ) <-> ( z e. A /\ z =/= B ) ) |
23 |
13
|
adantr |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC /\ A C_ S ) /\ B e. dom ( S _D F ) ) -> F : A --> CC ) |
24 |
23 19 21
|
dvlem |
|- ( ( ( ( S e. { RR , CC } /\ F : A --> CC /\ A C_ S ) /\ B e. dom ( S _D F ) ) /\ z e. ( A \ { B } ) ) -> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) e. CC ) |
25 |
22 24
|
sylan2br |
|- ( ( ( ( S e. { RR , CC } /\ F : A --> CC /\ A C_ S ) /\ B e. dom ( S _D F ) ) /\ ( z e. A /\ z =/= B ) ) -> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) e. CC ) |
26 |
19 21 25 1 2
|
limcmpt2 |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC /\ A C_ S ) /\ B e. dom ( S _D F ) ) -> ( ( ( S _D F ) ` B ) e. ( ( z e. ( A \ { B } ) |-> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) limCC B ) <-> ( z e. A |-> if ( z = B , ( ( S _D F ) ` B ) , ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) ) e. ( ( J CnP K ) ` B ) ) ) |
27 |
17 26
|
mpbid |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC /\ A C_ S ) /\ B e. dom ( S _D F ) ) -> ( z e. A |-> if ( z = B , ( ( S _D F ) ` B ) , ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) ) e. ( ( J CnP K ) ` B ) ) |
28 |
3 27
|
eqeltrid |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC /\ A C_ S ) /\ B e. dom ( S _D F ) ) -> G e. ( ( J CnP K ) ` B ) ) |