Step |
Hyp |
Ref |
Expression |
1 |
|
dvcnp.j |
|- J = ( K |`t A ) |
2 |
|
dvcnp.k |
|- K = ( TopOpen ` CCfld ) |
3 |
|
simpl2 |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> F : A --> CC ) |
4 |
3
|
ffvelrnda |
|- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. A ) -> ( F ` z ) e. CC ) |
5 |
2
|
cnfldtop |
|- K e. Top |
6 |
|
simpl1 |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> S C_ CC ) |
7 |
|
cnex |
|- CC e. _V |
8 |
|
ssexg |
|- ( ( S C_ CC /\ CC e. _V ) -> S e. _V ) |
9 |
6 7 8
|
sylancl |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> S e. _V ) |
10 |
|
resttop |
|- ( ( K e. Top /\ S e. _V ) -> ( K |`t S ) e. Top ) |
11 |
5 9 10
|
sylancr |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( K |`t S ) e. Top ) |
12 |
|
simpl3 |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> A C_ S ) |
13 |
2
|
cnfldtopon |
|- K e. ( TopOn ` CC ) |
14 |
|
resttopon |
|- ( ( K e. ( TopOn ` CC ) /\ S C_ CC ) -> ( K |`t S ) e. ( TopOn ` S ) ) |
15 |
13 6 14
|
sylancr |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( K |`t S ) e. ( TopOn ` S ) ) |
16 |
|
toponuni |
|- ( ( K |`t S ) e. ( TopOn ` S ) -> S = U. ( K |`t S ) ) |
17 |
15 16
|
syl |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> S = U. ( K |`t S ) ) |
18 |
12 17
|
sseqtrd |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> A C_ U. ( K |`t S ) ) |
19 |
|
eqid |
|- U. ( K |`t S ) = U. ( K |`t S ) |
20 |
19
|
ntrss2 |
|- ( ( ( K |`t S ) e. Top /\ A C_ U. ( K |`t S ) ) -> ( ( int ` ( K |`t S ) ) ` A ) C_ A ) |
21 |
11 18 20
|
syl2anc |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( ( int ` ( K |`t S ) ) ` A ) C_ A ) |
22 |
|
eqid |
|- ( K |`t S ) = ( K |`t S ) |
23 |
|
eqid |
|- ( z e. ( A \ { B } ) |-> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) = ( z e. ( A \ { B } ) |-> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) |
24 |
|
simp1 |
|- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> S C_ CC ) |
25 |
|
simp2 |
|- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> F : A --> CC ) |
26 |
|
simp3 |
|- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> A C_ S ) |
27 |
22 2 23 24 25 26
|
eldv |
|- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> ( B ( S _D F ) y <-> ( B e. ( ( int ` ( K |`t S ) ) ` A ) /\ y e. ( ( z e. ( A \ { B } ) |-> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) limCC B ) ) ) ) |
28 |
27
|
simprbda |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> B e. ( ( int ` ( K |`t S ) ) ` A ) ) |
29 |
21 28
|
sseldd |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> B e. A ) |
30 |
3 29
|
ffvelrnd |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( F ` B ) e. CC ) |
31 |
30
|
adantr |
|- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. A ) -> ( F ` B ) e. CC ) |
32 |
4 31
|
subcld |
|- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. A ) -> ( ( F ` z ) - ( F ` B ) ) e. CC ) |
33 |
|
ssid |
|- CC C_ CC |
34 |
33
|
a1i |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> CC C_ CC ) |
35 |
|
txtopon |
|- ( ( K e. ( TopOn ` CC ) /\ K e. ( TopOn ` CC ) ) -> ( K tX K ) e. ( TopOn ` ( CC X. CC ) ) ) |
36 |
13 13 35
|
mp2an |
|- ( K tX K ) e. ( TopOn ` ( CC X. CC ) ) |
37 |
36
|
toponrestid |
|- ( K tX K ) = ( ( K tX K ) |`t ( CC X. CC ) ) |
38 |
12 6
|
sstrd |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> A C_ CC ) |
39 |
3 38 29
|
dvlem |
|- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) e. CC ) |
40 |
38
|
ssdifssd |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( A \ { B } ) C_ CC ) |
41 |
40
|
sselda |
|- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> z e. CC ) |
42 |
38 29
|
sseldd |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> B e. CC ) |
43 |
42
|
adantr |
|- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> B e. CC ) |
44 |
41 43
|
subcld |
|- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> ( z - B ) e. CC ) |
45 |
27
|
simplbda |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> y e. ( ( z e. ( A \ { B } ) |-> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) limCC B ) ) |
46 |
|
limcresi |
|- ( ( z e. A |-> ( z - B ) ) limCC B ) C_ ( ( ( z e. A |-> ( z - B ) ) |` ( A \ { B } ) ) limCC B ) |
47 |
|
difss |
|- ( A \ { B } ) C_ A |
48 |
|
resmpt |
|- ( ( A \ { B } ) C_ A -> ( ( z e. A |-> ( z - B ) ) |` ( A \ { B } ) ) = ( z e. ( A \ { B } ) |-> ( z - B ) ) ) |
49 |
47 48
|
ax-mp |
|- ( ( z e. A |-> ( z - B ) ) |` ( A \ { B } ) ) = ( z e. ( A \ { B } ) |-> ( z - B ) ) |
50 |
49
|
oveq1i |
|- ( ( ( z e. A |-> ( z - B ) ) |` ( A \ { B } ) ) limCC B ) = ( ( z e. ( A \ { B } ) |-> ( z - B ) ) limCC B ) |
51 |
46 50
|
sseqtri |
|- ( ( z e. A |-> ( z - B ) ) limCC B ) C_ ( ( z e. ( A \ { B } ) |-> ( z - B ) ) limCC B ) |
52 |
42
|
subidd |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( B - B ) = 0 ) |
53 |
2
|
subcn |
|- - e. ( ( K tX K ) Cn K ) |
54 |
53
|
a1i |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> - e. ( ( K tX K ) Cn K ) ) |
55 |
|
cncfmptid |
|- ( ( A C_ CC /\ CC C_ CC ) -> ( z e. A |-> z ) e. ( A -cn-> CC ) ) |
56 |
38 33 55
|
sylancl |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( z e. A |-> z ) e. ( A -cn-> CC ) ) |
57 |
|
cncfmptc |
|- ( ( B e. CC /\ A C_ CC /\ CC C_ CC ) -> ( z e. A |-> B ) e. ( A -cn-> CC ) ) |
58 |
42 38 34 57
|
syl3anc |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( z e. A |-> B ) e. ( A -cn-> CC ) ) |
59 |
2 54 56 58
|
cncfmpt2f |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( z e. A |-> ( z - B ) ) e. ( A -cn-> CC ) ) |
60 |
|
oveq1 |
|- ( z = B -> ( z - B ) = ( B - B ) ) |
61 |
59 29 60
|
cnmptlimc |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( B - B ) e. ( ( z e. A |-> ( z - B ) ) limCC B ) ) |
62 |
52 61
|
eqeltrrd |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> 0 e. ( ( z e. A |-> ( z - B ) ) limCC B ) ) |
63 |
51 62
|
sselid |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> 0 e. ( ( z e. ( A \ { B } ) |-> ( z - B ) ) limCC B ) ) |
64 |
2
|
mulcn |
|- x. e. ( ( K tX K ) Cn K ) |
65 |
24 25 26
|
dvcl |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> y e. CC ) |
66 |
|
0cn |
|- 0 e. CC |
67 |
|
opelxpi |
|- ( ( y e. CC /\ 0 e. CC ) -> <. y , 0 >. e. ( CC X. CC ) ) |
68 |
65 66 67
|
sylancl |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> <. y , 0 >. e. ( CC X. CC ) ) |
69 |
36
|
toponunii |
|- ( CC X. CC ) = U. ( K tX K ) |
70 |
69
|
cncnpi |
|- ( ( x. e. ( ( K tX K ) Cn K ) /\ <. y , 0 >. e. ( CC X. CC ) ) -> x. e. ( ( ( K tX K ) CnP K ) ` <. y , 0 >. ) ) |
71 |
64 68 70
|
sylancr |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> x. e. ( ( ( K tX K ) CnP K ) ` <. y , 0 >. ) ) |
72 |
39 44 34 34 2 37 45 63 71
|
limccnp2 |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( y x. 0 ) e. ( ( z e. ( A \ { B } ) |-> ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) x. ( z - B ) ) ) limCC B ) ) |
73 |
65
|
mul01d |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( y x. 0 ) = 0 ) |
74 |
3
|
adantr |
|- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> F : A --> CC ) |
75 |
|
simpr |
|- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> z e. ( A \ { B } ) ) |
76 |
47 75
|
sselid |
|- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> z e. A ) |
77 |
74 76
|
ffvelrnd |
|- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> ( F ` z ) e. CC ) |
78 |
30
|
adantr |
|- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> ( F ` B ) e. CC ) |
79 |
77 78
|
subcld |
|- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> ( ( F ` z ) - ( F ` B ) ) e. CC ) |
80 |
|
eldifsni |
|- ( z e. ( A \ { B } ) -> z =/= B ) |
81 |
80
|
adantl |
|- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> z =/= B ) |
82 |
41 43 81
|
subne0d |
|- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> ( z - B ) =/= 0 ) |
83 |
79 44 82
|
divcan1d |
|- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) x. ( z - B ) ) = ( ( F ` z ) - ( F ` B ) ) ) |
84 |
83
|
mpteq2dva |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( z e. ( A \ { B } ) |-> ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) x. ( z - B ) ) ) = ( z e. ( A \ { B } ) |-> ( ( F ` z ) - ( F ` B ) ) ) ) |
85 |
84
|
oveq1d |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( ( z e. ( A \ { B } ) |-> ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) x. ( z - B ) ) ) limCC B ) = ( ( z e. ( A \ { B } ) |-> ( ( F ` z ) - ( F ` B ) ) ) limCC B ) ) |
86 |
72 73 85
|
3eltr3d |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> 0 e. ( ( z e. ( A \ { B } ) |-> ( ( F ` z ) - ( F ` B ) ) ) limCC B ) ) |
87 |
32
|
fmpttd |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( z e. A |-> ( ( F ` z ) - ( F ` B ) ) ) : A --> CC ) |
88 |
87
|
limcdif |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( ( z e. A |-> ( ( F ` z ) - ( F ` B ) ) ) limCC B ) = ( ( ( z e. A |-> ( ( F ` z ) - ( F ` B ) ) ) |` ( A \ { B } ) ) limCC B ) ) |
89 |
|
resmpt |
|- ( ( A \ { B } ) C_ A -> ( ( z e. A |-> ( ( F ` z ) - ( F ` B ) ) ) |` ( A \ { B } ) ) = ( z e. ( A \ { B } ) |-> ( ( F ` z ) - ( F ` B ) ) ) ) |
90 |
47 89
|
ax-mp |
|- ( ( z e. A |-> ( ( F ` z ) - ( F ` B ) ) ) |` ( A \ { B } ) ) = ( z e. ( A \ { B } ) |-> ( ( F ` z ) - ( F ` B ) ) ) |
91 |
90
|
oveq1i |
|- ( ( ( z e. A |-> ( ( F ` z ) - ( F ` B ) ) ) |` ( A \ { B } ) ) limCC B ) = ( ( z e. ( A \ { B } ) |-> ( ( F ` z ) - ( F ` B ) ) ) limCC B ) |
92 |
88 91
|
eqtrdi |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( ( z e. A |-> ( ( F ` z ) - ( F ` B ) ) ) limCC B ) = ( ( z e. ( A \ { B } ) |-> ( ( F ` z ) - ( F ` B ) ) ) limCC B ) ) |
93 |
86 92
|
eleqtrrd |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> 0 e. ( ( z e. A |-> ( ( F ` z ) - ( F ` B ) ) ) limCC B ) ) |
94 |
|
cncfmptc |
|- ( ( ( F ` B ) e. CC /\ A C_ CC /\ CC C_ CC ) -> ( z e. A |-> ( F ` B ) ) e. ( A -cn-> CC ) ) |
95 |
30 38 34 94
|
syl3anc |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( z e. A |-> ( F ` B ) ) e. ( A -cn-> CC ) ) |
96 |
|
eqidd |
|- ( z = B -> ( F ` B ) = ( F ` B ) ) |
97 |
95 29 96
|
cnmptlimc |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( F ` B ) e. ( ( z e. A |-> ( F ` B ) ) limCC B ) ) |
98 |
2
|
addcn |
|- + e. ( ( K tX K ) Cn K ) |
99 |
|
opelxpi |
|- ( ( 0 e. CC /\ ( F ` B ) e. CC ) -> <. 0 , ( F ` B ) >. e. ( CC X. CC ) ) |
100 |
66 30 99
|
sylancr |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> <. 0 , ( F ` B ) >. e. ( CC X. CC ) ) |
101 |
69
|
cncnpi |
|- ( ( + e. ( ( K tX K ) Cn K ) /\ <. 0 , ( F ` B ) >. e. ( CC X. CC ) ) -> + e. ( ( ( K tX K ) CnP K ) ` <. 0 , ( F ` B ) >. ) ) |
102 |
98 100 101
|
sylancr |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> + e. ( ( ( K tX K ) CnP K ) ` <. 0 , ( F ` B ) >. ) ) |
103 |
32 31 34 34 2 37 93 97 102
|
limccnp2 |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( 0 + ( F ` B ) ) e. ( ( z e. A |-> ( ( ( F ` z ) - ( F ` B ) ) + ( F ` B ) ) ) limCC B ) ) |
104 |
30
|
addid2d |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( 0 + ( F ` B ) ) = ( F ` B ) ) |
105 |
4 31
|
npcand |
|- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. A ) -> ( ( ( F ` z ) - ( F ` B ) ) + ( F ` B ) ) = ( F ` z ) ) |
106 |
105
|
mpteq2dva |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( z e. A |-> ( ( ( F ` z ) - ( F ` B ) ) + ( F ` B ) ) ) = ( z e. A |-> ( F ` z ) ) ) |
107 |
3
|
feqmptd |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> F = ( z e. A |-> ( F ` z ) ) ) |
108 |
106 107
|
eqtr4d |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( z e. A |-> ( ( ( F ` z ) - ( F ` B ) ) + ( F ` B ) ) ) = F ) |
109 |
108
|
oveq1d |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( ( z e. A |-> ( ( ( F ` z ) - ( F ` B ) ) + ( F ` B ) ) ) limCC B ) = ( F limCC B ) ) |
110 |
103 104 109
|
3eltr3d |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( F ` B ) e. ( F limCC B ) ) |
111 |
2 1
|
cnplimc |
|- ( ( A C_ CC /\ B e. A ) -> ( F e. ( ( J CnP K ) ` B ) <-> ( F : A --> CC /\ ( F ` B ) e. ( F limCC B ) ) ) ) |
112 |
38 29 111
|
syl2anc |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( F e. ( ( J CnP K ) ` B ) <-> ( F : A --> CC /\ ( F ` B ) e. ( F limCC B ) ) ) ) |
113 |
3 110 112
|
mpbir2and |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> F e. ( ( J CnP K ) ` B ) ) |
114 |
113
|
ex |
|- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> ( B ( S _D F ) y -> F e. ( ( J CnP K ) ` B ) ) ) |
115 |
114
|
exlimdv |
|- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> ( E. y B ( S _D F ) y -> F e. ( ( J CnP K ) ` B ) ) ) |
116 |
|
eldmg |
|- ( B e. dom ( S _D F ) -> ( B e. dom ( S _D F ) <-> E. y B ( S _D F ) y ) ) |
117 |
116
|
ibi |
|- ( B e. dom ( S _D F ) -> E. y B ( S _D F ) y ) |
118 |
115 117
|
impel |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B e. dom ( S _D F ) ) -> F e. ( ( J CnP K ) ` B ) ) |