| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reelprrecn |  |-  RR e. { RR , CC } | 
						
							| 2 | 1 | a1i |  |-  ( ( F : CC --> CC /\ RR C_ dom ( CC _D F ) ) -> RR e. { RR , CC } ) | 
						
							| 3 |  | simpl |  |-  ( ( F : CC --> CC /\ RR C_ dom ( CC _D F ) ) -> F : CC --> CC ) | 
						
							| 4 |  | ssidd |  |-  ( ( F : CC --> CC /\ RR C_ dom ( CC _D F ) ) -> CC C_ CC ) | 
						
							| 5 |  | simpr |  |-  ( ( F : CC --> CC /\ RR C_ dom ( CC _D F ) ) -> RR C_ dom ( CC _D F ) ) | 
						
							| 6 |  | dvres3 |  |-  ( ( ( RR e. { RR , CC } /\ F : CC --> CC ) /\ ( CC C_ CC /\ RR C_ dom ( CC _D F ) ) ) -> ( RR _D ( F |` RR ) ) = ( ( CC _D F ) |` RR ) ) | 
						
							| 7 | 2 3 4 5 6 | syl22anc |  |-  ( ( F : CC --> CC /\ RR C_ dom ( CC _D F ) ) -> ( RR _D ( F |` RR ) ) = ( ( CC _D F ) |` RR ) ) |