Step |
Hyp |
Ref |
Expression |
1 |
|
dvcncxp1.d |
|- D = ( CC \ ( -oo (,] 0 ) ) |
2 |
|
halfcn |
|- ( 1 / 2 ) e. CC |
3 |
1
|
dvcncxp1 |
|- ( ( 1 / 2 ) e. CC -> ( CC _D ( x e. D |-> ( x ^c ( 1 / 2 ) ) ) ) = ( x e. D |-> ( ( 1 / 2 ) x. ( x ^c ( ( 1 / 2 ) - 1 ) ) ) ) ) |
4 |
2 3
|
ax-mp |
|- ( CC _D ( x e. D |-> ( x ^c ( 1 / 2 ) ) ) ) = ( x e. D |-> ( ( 1 / 2 ) x. ( x ^c ( ( 1 / 2 ) - 1 ) ) ) ) |
5 |
|
difss |
|- ( CC \ ( -oo (,] 0 ) ) C_ CC |
6 |
1 5
|
eqsstri |
|- D C_ CC |
7 |
6
|
sseli |
|- ( x e. D -> x e. CC ) |
8 |
|
cxpsqrt |
|- ( x e. CC -> ( x ^c ( 1 / 2 ) ) = ( sqrt ` x ) ) |
9 |
7 8
|
syl |
|- ( x e. D -> ( x ^c ( 1 / 2 ) ) = ( sqrt ` x ) ) |
10 |
9
|
mpteq2ia |
|- ( x e. D |-> ( x ^c ( 1 / 2 ) ) ) = ( x e. D |-> ( sqrt ` x ) ) |
11 |
10
|
oveq2i |
|- ( CC _D ( x e. D |-> ( x ^c ( 1 / 2 ) ) ) ) = ( CC _D ( x e. D |-> ( sqrt ` x ) ) ) |
12 |
|
1p0e1 |
|- ( 1 + 0 ) = 1 |
13 |
|
ax-1cn |
|- 1 e. CC |
14 |
|
2halves |
|- ( 1 e. CC -> ( ( 1 / 2 ) + ( 1 / 2 ) ) = 1 ) |
15 |
13 14
|
ax-mp |
|- ( ( 1 / 2 ) + ( 1 / 2 ) ) = 1 |
16 |
12 15
|
eqtr4i |
|- ( 1 + 0 ) = ( ( 1 / 2 ) + ( 1 / 2 ) ) |
17 |
|
0cn |
|- 0 e. CC |
18 |
|
addsubeq4 |
|- ( ( ( 1 e. CC /\ 0 e. CC ) /\ ( ( 1 / 2 ) e. CC /\ ( 1 / 2 ) e. CC ) ) -> ( ( 1 + 0 ) = ( ( 1 / 2 ) + ( 1 / 2 ) ) <-> ( ( 1 / 2 ) - 1 ) = ( 0 - ( 1 / 2 ) ) ) ) |
19 |
13 17 2 2 18
|
mp4an |
|- ( ( 1 + 0 ) = ( ( 1 / 2 ) + ( 1 / 2 ) ) <-> ( ( 1 / 2 ) - 1 ) = ( 0 - ( 1 / 2 ) ) ) |
20 |
16 19
|
mpbi |
|- ( ( 1 / 2 ) - 1 ) = ( 0 - ( 1 / 2 ) ) |
21 |
|
df-neg |
|- -u ( 1 / 2 ) = ( 0 - ( 1 / 2 ) ) |
22 |
20 21
|
eqtr4i |
|- ( ( 1 / 2 ) - 1 ) = -u ( 1 / 2 ) |
23 |
22
|
oveq2i |
|- ( x ^c ( ( 1 / 2 ) - 1 ) ) = ( x ^c -u ( 1 / 2 ) ) |
24 |
1
|
logdmn0 |
|- ( x e. D -> x =/= 0 ) |
25 |
2
|
a1i |
|- ( x e. D -> ( 1 / 2 ) e. CC ) |
26 |
7 24 25
|
cxpnegd |
|- ( x e. D -> ( x ^c -u ( 1 / 2 ) ) = ( 1 / ( x ^c ( 1 / 2 ) ) ) ) |
27 |
23 26
|
syl5eq |
|- ( x e. D -> ( x ^c ( ( 1 / 2 ) - 1 ) ) = ( 1 / ( x ^c ( 1 / 2 ) ) ) ) |
28 |
9
|
oveq2d |
|- ( x e. D -> ( 1 / ( x ^c ( 1 / 2 ) ) ) = ( 1 / ( sqrt ` x ) ) ) |
29 |
27 28
|
eqtrd |
|- ( x e. D -> ( x ^c ( ( 1 / 2 ) - 1 ) ) = ( 1 / ( sqrt ` x ) ) ) |
30 |
29
|
oveq2d |
|- ( x e. D -> ( ( 1 / 2 ) x. ( x ^c ( ( 1 / 2 ) - 1 ) ) ) = ( ( 1 / 2 ) x. ( 1 / ( sqrt ` x ) ) ) ) |
31 |
|
1cnd |
|- ( x e. D -> 1 e. CC ) |
32 |
|
2cnd |
|- ( x e. D -> 2 e. CC ) |
33 |
7
|
sqrtcld |
|- ( x e. D -> ( sqrt ` x ) e. CC ) |
34 |
|
2ne0 |
|- 2 =/= 0 |
35 |
34
|
a1i |
|- ( x e. D -> 2 =/= 0 ) |
36 |
7
|
adantr |
|- ( ( x e. D /\ ( sqrt ` x ) = 0 ) -> x e. CC ) |
37 |
|
simpr |
|- ( ( x e. D /\ ( sqrt ` x ) = 0 ) -> ( sqrt ` x ) = 0 ) |
38 |
36 37
|
sqr00d |
|- ( ( x e. D /\ ( sqrt ` x ) = 0 ) -> x = 0 ) |
39 |
38
|
ex |
|- ( x e. D -> ( ( sqrt ` x ) = 0 -> x = 0 ) ) |
40 |
39
|
necon3d |
|- ( x e. D -> ( x =/= 0 -> ( sqrt ` x ) =/= 0 ) ) |
41 |
24 40
|
mpd |
|- ( x e. D -> ( sqrt ` x ) =/= 0 ) |
42 |
31 32 31 33 35 41
|
divmuldivd |
|- ( x e. D -> ( ( 1 / 2 ) x. ( 1 / ( sqrt ` x ) ) ) = ( ( 1 x. 1 ) / ( 2 x. ( sqrt ` x ) ) ) ) |
43 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
44 |
43
|
oveq1i |
|- ( ( 1 x. 1 ) / ( 2 x. ( sqrt ` x ) ) ) = ( 1 / ( 2 x. ( sqrt ` x ) ) ) |
45 |
42 44
|
eqtrdi |
|- ( x e. D -> ( ( 1 / 2 ) x. ( 1 / ( sqrt ` x ) ) ) = ( 1 / ( 2 x. ( sqrt ` x ) ) ) ) |
46 |
30 45
|
eqtrd |
|- ( x e. D -> ( ( 1 / 2 ) x. ( x ^c ( ( 1 / 2 ) - 1 ) ) ) = ( 1 / ( 2 x. ( sqrt ` x ) ) ) ) |
47 |
46
|
mpteq2ia |
|- ( x e. D |-> ( ( 1 / 2 ) x. ( x ^c ( ( 1 / 2 ) - 1 ) ) ) ) = ( x e. D |-> ( 1 / ( 2 x. ( sqrt ` x ) ) ) ) |
48 |
4 11 47
|
3eqtr3i |
|- ( CC _D ( x e. D |-> ( sqrt ` x ) ) ) = ( x e. D |-> ( 1 / ( 2 x. ( sqrt ` x ) ) ) ) |