| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvcnv.j |
|- J = ( TopOpen ` CCfld ) |
| 2 |
|
dvcnv.k |
|- K = ( J |`t S ) |
| 3 |
|
dvcnv.s |
|- ( ph -> S e. { RR , CC } ) |
| 4 |
|
dvcnv.y |
|- ( ph -> Y e. K ) |
| 5 |
|
dvcnv.f |
|- ( ph -> F : X -1-1-onto-> Y ) |
| 6 |
|
dvcnv.i |
|- ( ph -> `' F e. ( Y -cn-> X ) ) |
| 7 |
|
dvcnv.d |
|- ( ph -> dom ( S _D F ) = X ) |
| 8 |
|
dvcnv.z |
|- ( ph -> -. 0 e. ran ( S _D F ) ) |
| 9 |
|
dvfg |
|- ( S e. { RR , CC } -> ( S _D `' F ) : dom ( S _D `' F ) --> CC ) |
| 10 |
3 9
|
syl |
|- ( ph -> ( S _D `' F ) : dom ( S _D `' F ) --> CC ) |
| 11 |
|
recnprss |
|- ( S e. { RR , CC } -> S C_ CC ) |
| 12 |
3 11
|
syl |
|- ( ph -> S C_ CC ) |
| 13 |
|
f1ocnv |
|- ( F : X -1-1-onto-> Y -> `' F : Y -1-1-onto-> X ) |
| 14 |
|
f1of |
|- ( `' F : Y -1-1-onto-> X -> `' F : Y --> X ) |
| 15 |
5 13 14
|
3syl |
|- ( ph -> `' F : Y --> X ) |
| 16 |
|
dvbsss |
|- dom ( S _D F ) C_ S |
| 17 |
7 16
|
eqsstrrdi |
|- ( ph -> X C_ S ) |
| 18 |
17 12
|
sstrd |
|- ( ph -> X C_ CC ) |
| 19 |
15 18
|
fssd |
|- ( ph -> `' F : Y --> CC ) |
| 20 |
1
|
cnfldtopon |
|- J e. ( TopOn ` CC ) |
| 21 |
|
resttopon |
|- ( ( J e. ( TopOn ` CC ) /\ S C_ CC ) -> ( J |`t S ) e. ( TopOn ` S ) ) |
| 22 |
20 12 21
|
sylancr |
|- ( ph -> ( J |`t S ) e. ( TopOn ` S ) ) |
| 23 |
2 22
|
eqeltrid |
|- ( ph -> K e. ( TopOn ` S ) ) |
| 24 |
|
toponss |
|- ( ( K e. ( TopOn ` S ) /\ Y e. K ) -> Y C_ S ) |
| 25 |
23 4 24
|
syl2anc |
|- ( ph -> Y C_ S ) |
| 26 |
12 19 25
|
dvbss |
|- ( ph -> dom ( S _D `' F ) C_ Y ) |
| 27 |
|
f1ocnvfv2 |
|- ( ( F : X -1-1-onto-> Y /\ x e. Y ) -> ( F ` ( `' F ` x ) ) = x ) |
| 28 |
5 27
|
sylan |
|- ( ( ph /\ x e. Y ) -> ( F ` ( `' F ` x ) ) = x ) |
| 29 |
3
|
adantr |
|- ( ( ph /\ x e. Y ) -> S e. { RR , CC } ) |
| 30 |
4
|
adantr |
|- ( ( ph /\ x e. Y ) -> Y e. K ) |
| 31 |
5
|
adantr |
|- ( ( ph /\ x e. Y ) -> F : X -1-1-onto-> Y ) |
| 32 |
6
|
adantr |
|- ( ( ph /\ x e. Y ) -> `' F e. ( Y -cn-> X ) ) |
| 33 |
7
|
adantr |
|- ( ( ph /\ x e. Y ) -> dom ( S _D F ) = X ) |
| 34 |
8
|
adantr |
|- ( ( ph /\ x e. Y ) -> -. 0 e. ran ( S _D F ) ) |
| 35 |
15
|
ffvelcdmda |
|- ( ( ph /\ x e. Y ) -> ( `' F ` x ) e. X ) |
| 36 |
1 2 29 30 31 32 33 34 35
|
dvcnvlem |
|- ( ( ph /\ x e. Y ) -> ( F ` ( `' F ` x ) ) ( S _D `' F ) ( 1 / ( ( S _D F ) ` ( `' F ` x ) ) ) ) |
| 37 |
28 36
|
eqbrtrrd |
|- ( ( ph /\ x e. Y ) -> x ( S _D `' F ) ( 1 / ( ( S _D F ) ` ( `' F ` x ) ) ) ) |
| 38 |
|
reldv |
|- Rel ( S _D `' F ) |
| 39 |
38
|
releldmi |
|- ( x ( S _D `' F ) ( 1 / ( ( S _D F ) ` ( `' F ` x ) ) ) -> x e. dom ( S _D `' F ) ) |
| 40 |
37 39
|
syl |
|- ( ( ph /\ x e. Y ) -> x e. dom ( S _D `' F ) ) |
| 41 |
26 40
|
eqelssd |
|- ( ph -> dom ( S _D `' F ) = Y ) |
| 42 |
41
|
feq2d |
|- ( ph -> ( ( S _D `' F ) : dom ( S _D `' F ) --> CC <-> ( S _D `' F ) : Y --> CC ) ) |
| 43 |
10 42
|
mpbid |
|- ( ph -> ( S _D `' F ) : Y --> CC ) |
| 44 |
43
|
feqmptd |
|- ( ph -> ( S _D `' F ) = ( x e. Y |-> ( ( S _D `' F ) ` x ) ) ) |
| 45 |
10
|
adantr |
|- ( ( ph /\ x e. Y ) -> ( S _D `' F ) : dom ( S _D `' F ) --> CC ) |
| 46 |
45
|
ffund |
|- ( ( ph /\ x e. Y ) -> Fun ( S _D `' F ) ) |
| 47 |
|
funbrfv |
|- ( Fun ( S _D `' F ) -> ( x ( S _D `' F ) ( 1 / ( ( S _D F ) ` ( `' F ` x ) ) ) -> ( ( S _D `' F ) ` x ) = ( 1 / ( ( S _D F ) ` ( `' F ` x ) ) ) ) ) |
| 48 |
46 37 47
|
sylc |
|- ( ( ph /\ x e. Y ) -> ( ( S _D `' F ) ` x ) = ( 1 / ( ( S _D F ) ` ( `' F ` x ) ) ) ) |
| 49 |
48
|
mpteq2dva |
|- ( ph -> ( x e. Y |-> ( ( S _D `' F ) ` x ) ) = ( x e. Y |-> ( 1 / ( ( S _D F ) ` ( `' F ` x ) ) ) ) ) |
| 50 |
44 49
|
eqtrd |
|- ( ph -> ( S _D `' F ) = ( x e. Y |-> ( 1 / ( ( S _D F ) ` ( `' F ` x ) ) ) ) ) |