Step |
Hyp |
Ref |
Expression |
1 |
|
dvcnvre.f |
|- ( ph -> F e. ( X -cn-> RR ) ) |
2 |
|
dvcnvre.d |
|- ( ph -> dom ( RR _D F ) = X ) |
3 |
|
dvcnvre.z |
|- ( ph -> -. 0 e. ran ( RR _D F ) ) |
4 |
|
dvcnvre.1 |
|- ( ph -> F : X -1-1-onto-> Y ) |
5 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
6 |
5
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
7 |
|
reelprrecn |
|- RR e. { RR , CC } |
8 |
7
|
a1i |
|- ( ph -> RR e. { RR , CC } ) |
9 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
10 |
|
f1ofo |
|- ( F : X -1-1-onto-> Y -> F : X -onto-> Y ) |
11 |
|
forn |
|- ( F : X -onto-> Y -> ran F = Y ) |
12 |
4 10 11
|
3syl |
|- ( ph -> ran F = Y ) |
13 |
|
cncff |
|- ( F e. ( X -cn-> RR ) -> F : X --> RR ) |
14 |
|
frn |
|- ( F : X --> RR -> ran F C_ RR ) |
15 |
1 13 14
|
3syl |
|- ( ph -> ran F C_ RR ) |
16 |
12 15
|
eqsstrrd |
|- ( ph -> Y C_ RR ) |
17 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
18 |
17
|
ntrss2 |
|- ( ( ( topGen ` ran (,) ) e. Top /\ Y C_ RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` Y ) C_ Y ) |
19 |
9 16 18
|
sylancr |
|- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` Y ) C_ Y ) |
20 |
|
f1ocnvfv2 |
|- ( ( F : X -1-1-onto-> Y /\ x e. Y ) -> ( F ` ( `' F ` x ) ) = x ) |
21 |
4 20
|
sylan |
|- ( ( ph /\ x e. Y ) -> ( F ` ( `' F ` x ) ) = x ) |
22 |
|
eqid |
|- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |
23 |
22
|
rexmet |
|- ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) |
24 |
|
dvbsss |
|- dom ( RR _D F ) C_ RR |
25 |
24
|
a1i |
|- ( ph -> dom ( RR _D F ) C_ RR ) |
26 |
2 25
|
eqsstrrd |
|- ( ph -> X C_ RR ) |
27 |
17
|
ntrss2 |
|- ( ( ( topGen ` ran (,) ) e. Top /\ X C_ RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` X ) C_ X ) |
28 |
9 26 27
|
sylancr |
|- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` X ) C_ X ) |
29 |
|
ax-resscn |
|- RR C_ CC |
30 |
29
|
a1i |
|- ( ph -> RR C_ CC ) |
31 |
1 13
|
syl |
|- ( ph -> F : X --> RR ) |
32 |
|
fss |
|- ( ( F : X --> RR /\ RR C_ CC ) -> F : X --> CC ) |
33 |
31 29 32
|
sylancl |
|- ( ph -> F : X --> CC ) |
34 |
30 33 26 6 5
|
dvbssntr |
|- ( ph -> dom ( RR _D F ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` X ) ) |
35 |
2 34
|
eqsstrrd |
|- ( ph -> X C_ ( ( int ` ( topGen ` ran (,) ) ) ` X ) ) |
36 |
28 35
|
eqssd |
|- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` X ) = X ) |
37 |
17
|
isopn3 |
|- ( ( ( topGen ` ran (,) ) e. Top /\ X C_ RR ) -> ( X e. ( topGen ` ran (,) ) <-> ( ( int ` ( topGen ` ran (,) ) ) ` X ) = X ) ) |
38 |
9 26 37
|
sylancr |
|- ( ph -> ( X e. ( topGen ` ran (,) ) <-> ( ( int ` ( topGen ` ran (,) ) ) ` X ) = X ) ) |
39 |
36 38
|
mpbird |
|- ( ph -> X e. ( topGen ` ran (,) ) ) |
40 |
|
f1ocnv |
|- ( F : X -1-1-onto-> Y -> `' F : Y -1-1-onto-> X ) |
41 |
|
f1of |
|- ( `' F : Y -1-1-onto-> X -> `' F : Y --> X ) |
42 |
4 40 41
|
3syl |
|- ( ph -> `' F : Y --> X ) |
43 |
42
|
ffvelrnda |
|- ( ( ph /\ x e. Y ) -> ( `' F ` x ) e. X ) |
44 |
|
eqid |
|- ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
45 |
22 44
|
tgioo |
|- ( topGen ` ran (,) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
46 |
45
|
mopni2 |
|- ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) /\ X e. ( topGen ` ran (,) ) /\ ( `' F ` x ) e. X ) -> E. r e. RR+ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) |
47 |
23 39 43 46
|
mp3an2ani |
|- ( ( ph /\ x e. Y ) -> E. r e. RR+ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) |
48 |
1
|
ad2antrr |
|- ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) -> F e. ( X -cn-> RR ) ) |
49 |
2
|
ad2antrr |
|- ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) -> dom ( RR _D F ) = X ) |
50 |
3
|
ad2antrr |
|- ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) -> -. 0 e. ran ( RR _D F ) ) |
51 |
4
|
ad2antrr |
|- ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) -> F : X -1-1-onto-> Y ) |
52 |
43
|
adantr |
|- ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) -> ( `' F ` x ) e. X ) |
53 |
|
rphalfcl |
|- ( r e. RR+ -> ( r / 2 ) e. RR+ ) |
54 |
53
|
ad2antrl |
|- ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) -> ( r / 2 ) e. RR+ ) |
55 |
26
|
ad2antrr |
|- ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) -> X C_ RR ) |
56 |
55 52
|
sseldd |
|- ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) -> ( `' F ` x ) e. RR ) |
57 |
54
|
rpred |
|- ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) -> ( r / 2 ) e. RR ) |
58 |
56 57
|
resubcld |
|- ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) -> ( ( `' F ` x ) - ( r / 2 ) ) e. RR ) |
59 |
56 57
|
readdcld |
|- ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) -> ( ( `' F ` x ) + ( r / 2 ) ) e. RR ) |
60 |
|
elicc2 |
|- ( ( ( ( `' F ` x ) - ( r / 2 ) ) e. RR /\ ( ( `' F ` x ) + ( r / 2 ) ) e. RR ) -> ( y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) <-> ( y e. RR /\ ( ( `' F ` x ) - ( r / 2 ) ) <_ y /\ y <_ ( ( `' F ` x ) + ( r / 2 ) ) ) ) ) |
61 |
58 59 60
|
syl2anc |
|- ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) -> ( y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) <-> ( y e. RR /\ ( ( `' F ` x ) - ( r / 2 ) ) <_ y /\ y <_ ( ( `' F ` x ) + ( r / 2 ) ) ) ) ) |
62 |
61
|
biimpa |
|- ( ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) /\ y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) ) -> ( y e. RR /\ ( ( `' F ` x ) - ( r / 2 ) ) <_ y /\ y <_ ( ( `' F ` x ) + ( r / 2 ) ) ) ) |
63 |
62
|
simp1d |
|- ( ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) /\ y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) ) -> y e. RR ) |
64 |
56
|
adantr |
|- ( ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) /\ y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) ) -> ( `' F ` x ) e. RR ) |
65 |
|
simplrl |
|- ( ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) /\ y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) ) -> r e. RR+ ) |
66 |
65
|
rpred |
|- ( ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) /\ y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) ) -> r e. RR ) |
67 |
64 66
|
resubcld |
|- ( ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) /\ y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) ) -> ( ( `' F ` x ) - r ) e. RR ) |
68 |
58
|
adantr |
|- ( ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) /\ y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) ) -> ( ( `' F ` x ) - ( r / 2 ) ) e. RR ) |
69 |
65 53
|
syl |
|- ( ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) /\ y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) ) -> ( r / 2 ) e. RR+ ) |
70 |
69
|
rpred |
|- ( ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) /\ y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) ) -> ( r / 2 ) e. RR ) |
71 |
|
rphalflt |
|- ( r e. RR+ -> ( r / 2 ) < r ) |
72 |
65 71
|
syl |
|- ( ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) /\ y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) ) -> ( r / 2 ) < r ) |
73 |
70 66 64 72
|
ltsub2dd |
|- ( ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) /\ y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) ) -> ( ( `' F ` x ) - r ) < ( ( `' F ` x ) - ( r / 2 ) ) ) |
74 |
62
|
simp2d |
|- ( ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) /\ y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) ) -> ( ( `' F ` x ) - ( r / 2 ) ) <_ y ) |
75 |
67 68 63 73 74
|
ltletrd |
|- ( ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) /\ y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) ) -> ( ( `' F ` x ) - r ) < y ) |
76 |
59
|
adantr |
|- ( ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) /\ y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) ) -> ( ( `' F ` x ) + ( r / 2 ) ) e. RR ) |
77 |
64 66
|
readdcld |
|- ( ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) /\ y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) ) -> ( ( `' F ` x ) + r ) e. RR ) |
78 |
62
|
simp3d |
|- ( ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) /\ y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) ) -> y <_ ( ( `' F ` x ) + ( r / 2 ) ) ) |
79 |
70 66 64 72
|
ltadd2dd |
|- ( ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) /\ y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) ) -> ( ( `' F ` x ) + ( r / 2 ) ) < ( ( `' F ` x ) + r ) ) |
80 |
63 76 77 78 79
|
lelttrd |
|- ( ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) /\ y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) ) -> y < ( ( `' F ` x ) + r ) ) |
81 |
67
|
rexrd |
|- ( ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) /\ y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) ) -> ( ( `' F ` x ) - r ) e. RR* ) |
82 |
77
|
rexrd |
|- ( ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) /\ y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) ) -> ( ( `' F ` x ) + r ) e. RR* ) |
83 |
|
elioo2 |
|- ( ( ( ( `' F ` x ) - r ) e. RR* /\ ( ( `' F ` x ) + r ) e. RR* ) -> ( y e. ( ( ( `' F ` x ) - r ) (,) ( ( `' F ` x ) + r ) ) <-> ( y e. RR /\ ( ( `' F ` x ) - r ) < y /\ y < ( ( `' F ` x ) + r ) ) ) ) |
84 |
81 82 83
|
syl2anc |
|- ( ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) /\ y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) ) -> ( y e. ( ( ( `' F ` x ) - r ) (,) ( ( `' F ` x ) + r ) ) <-> ( y e. RR /\ ( ( `' F ` x ) - r ) < y /\ y < ( ( `' F ` x ) + r ) ) ) ) |
85 |
63 75 80 84
|
mpbir3and |
|- ( ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) /\ y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) ) -> y e. ( ( ( `' F ` x ) - r ) (,) ( ( `' F ` x ) + r ) ) ) |
86 |
85
|
ex |
|- ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) -> ( y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) -> y e. ( ( ( `' F ` x ) - r ) (,) ( ( `' F ` x ) + r ) ) ) ) |
87 |
86
|
ssrdv |
|- ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) -> ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) C_ ( ( ( `' F ` x ) - r ) (,) ( ( `' F ` x ) + r ) ) ) |
88 |
|
rpre |
|- ( r e. RR+ -> r e. RR ) |
89 |
88
|
ad2antrl |
|- ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) -> r e. RR ) |
90 |
22
|
bl2ioo |
|- ( ( ( `' F ` x ) e. RR /\ r e. RR ) -> ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) = ( ( ( `' F ` x ) - r ) (,) ( ( `' F ` x ) + r ) ) ) |
91 |
56 89 90
|
syl2anc |
|- ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) -> ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) = ( ( ( `' F ` x ) - r ) (,) ( ( `' F ` x ) + r ) ) ) |
92 |
87 91
|
sseqtrrd |
|- ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) -> ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) C_ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) ) |
93 |
|
simprr |
|- ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) -> ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) |
94 |
92 93
|
sstrd |
|- ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) -> ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) C_ X ) |
95 |
|
eqid |
|- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
96 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t X ) = ( ( TopOpen ` CCfld ) |`t X ) |
97 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t Y ) = ( ( TopOpen ` CCfld ) |`t Y ) |
98 |
48 49 50 51 52 54 94 95 5 96 97
|
dvcnvrelem2 |
|- ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) -> ( ( F ` ( `' F ` x ) ) e. ( ( int ` ( topGen ` ran (,) ) ) ` Y ) /\ `' F e. ( ( ( ( TopOpen ` CCfld ) |`t Y ) CnP ( ( TopOpen ` CCfld ) |`t X ) ) ` ( F ` ( `' F ` x ) ) ) ) ) |
99 |
47 98
|
rexlimddv |
|- ( ( ph /\ x e. Y ) -> ( ( F ` ( `' F ` x ) ) e. ( ( int ` ( topGen ` ran (,) ) ) ` Y ) /\ `' F e. ( ( ( ( TopOpen ` CCfld ) |`t Y ) CnP ( ( TopOpen ` CCfld ) |`t X ) ) ` ( F ` ( `' F ` x ) ) ) ) ) |
100 |
99
|
simpld |
|- ( ( ph /\ x e. Y ) -> ( F ` ( `' F ` x ) ) e. ( ( int ` ( topGen ` ran (,) ) ) ` Y ) ) |
101 |
21 100
|
eqeltrrd |
|- ( ( ph /\ x e. Y ) -> x e. ( ( int ` ( topGen ` ran (,) ) ) ` Y ) ) |
102 |
19 101
|
eqelssd |
|- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` Y ) = Y ) |
103 |
17
|
isopn3 |
|- ( ( ( topGen ` ran (,) ) e. Top /\ Y C_ RR ) -> ( Y e. ( topGen ` ran (,) ) <-> ( ( int ` ( topGen ` ran (,) ) ) ` Y ) = Y ) ) |
104 |
9 16 103
|
sylancr |
|- ( ph -> ( Y e. ( topGen ` ran (,) ) <-> ( ( int ` ( topGen ` ran (,) ) ) ` Y ) = Y ) ) |
105 |
102 104
|
mpbird |
|- ( ph -> Y e. ( topGen ` ran (,) ) ) |
106 |
99
|
simprd |
|- ( ( ph /\ x e. Y ) -> `' F e. ( ( ( ( TopOpen ` CCfld ) |`t Y ) CnP ( ( TopOpen ` CCfld ) |`t X ) ) ` ( F ` ( `' F ` x ) ) ) ) |
107 |
21
|
fveq2d |
|- ( ( ph /\ x e. Y ) -> ( ( ( ( TopOpen ` CCfld ) |`t Y ) CnP ( ( TopOpen ` CCfld ) |`t X ) ) ` ( F ` ( `' F ` x ) ) ) = ( ( ( ( TopOpen ` CCfld ) |`t Y ) CnP ( ( TopOpen ` CCfld ) |`t X ) ) ` x ) ) |
108 |
106 107
|
eleqtrd |
|- ( ( ph /\ x e. Y ) -> `' F e. ( ( ( ( TopOpen ` CCfld ) |`t Y ) CnP ( ( TopOpen ` CCfld ) |`t X ) ) ` x ) ) |
109 |
108
|
ralrimiva |
|- ( ph -> A. x e. Y `' F e. ( ( ( ( TopOpen ` CCfld ) |`t Y ) CnP ( ( TopOpen ` CCfld ) |`t X ) ) ` x ) ) |
110 |
5
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
111 |
16 29
|
sstrdi |
|- ( ph -> Y C_ CC ) |
112 |
|
resttopon |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ Y C_ CC ) -> ( ( TopOpen ` CCfld ) |`t Y ) e. ( TopOn ` Y ) ) |
113 |
110 111 112
|
sylancr |
|- ( ph -> ( ( TopOpen ` CCfld ) |`t Y ) e. ( TopOn ` Y ) ) |
114 |
26 29
|
sstrdi |
|- ( ph -> X C_ CC ) |
115 |
|
resttopon |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ X C_ CC ) -> ( ( TopOpen ` CCfld ) |`t X ) e. ( TopOn ` X ) ) |
116 |
110 114 115
|
sylancr |
|- ( ph -> ( ( TopOpen ` CCfld ) |`t X ) e. ( TopOn ` X ) ) |
117 |
|
cncnp |
|- ( ( ( ( TopOpen ` CCfld ) |`t Y ) e. ( TopOn ` Y ) /\ ( ( TopOpen ` CCfld ) |`t X ) e. ( TopOn ` X ) ) -> ( `' F e. ( ( ( TopOpen ` CCfld ) |`t Y ) Cn ( ( TopOpen ` CCfld ) |`t X ) ) <-> ( `' F : Y --> X /\ A. x e. Y `' F e. ( ( ( ( TopOpen ` CCfld ) |`t Y ) CnP ( ( TopOpen ` CCfld ) |`t X ) ) ` x ) ) ) ) |
118 |
113 116 117
|
syl2anc |
|- ( ph -> ( `' F e. ( ( ( TopOpen ` CCfld ) |`t Y ) Cn ( ( TopOpen ` CCfld ) |`t X ) ) <-> ( `' F : Y --> X /\ A. x e. Y `' F e. ( ( ( ( TopOpen ` CCfld ) |`t Y ) CnP ( ( TopOpen ` CCfld ) |`t X ) ) ` x ) ) ) ) |
119 |
42 109 118
|
mpbir2and |
|- ( ph -> `' F e. ( ( ( TopOpen ` CCfld ) |`t Y ) Cn ( ( TopOpen ` CCfld ) |`t X ) ) ) |
120 |
5 97 96
|
cncfcn |
|- ( ( Y C_ CC /\ X C_ CC ) -> ( Y -cn-> X ) = ( ( ( TopOpen ` CCfld ) |`t Y ) Cn ( ( TopOpen ` CCfld ) |`t X ) ) ) |
121 |
111 114 120
|
syl2anc |
|- ( ph -> ( Y -cn-> X ) = ( ( ( TopOpen ` CCfld ) |`t Y ) Cn ( ( TopOpen ` CCfld ) |`t X ) ) ) |
122 |
119 121
|
eleqtrrd |
|- ( ph -> `' F e. ( Y -cn-> X ) ) |
123 |
5 6 8 105 4 122 2 3
|
dvcnv |
|- ( ph -> ( RR _D `' F ) = ( x e. Y |-> ( 1 / ( ( RR _D F ) ` ( `' F ` x ) ) ) ) ) |