Step |
Hyp |
Ref |
Expression |
1 |
|
dvcnvre.f |
|- ( ph -> F e. ( X -cn-> RR ) ) |
2 |
|
dvcnvre.d |
|- ( ph -> dom ( RR _D F ) = X ) |
3 |
|
dvcnvre.z |
|- ( ph -> -. 0 e. ran ( RR _D F ) ) |
4 |
|
dvcnvre.1 |
|- ( ph -> F : X -1-1-onto-> Y ) |
5 |
|
dvcnvre.c |
|- ( ph -> C e. X ) |
6 |
|
dvcnvre.r |
|- ( ph -> R e. RR+ ) |
7 |
|
dvcnvre.s |
|- ( ph -> ( ( C - R ) [,] ( C + R ) ) C_ X ) |
8 |
|
dvbsss |
|- dom ( RR _D F ) C_ RR |
9 |
2 8
|
eqsstrrdi |
|- ( ph -> X C_ RR ) |
10 |
9 5
|
sseldd |
|- ( ph -> C e. RR ) |
11 |
6
|
rpred |
|- ( ph -> R e. RR ) |
12 |
10 11
|
resubcld |
|- ( ph -> ( C - R ) e. RR ) |
13 |
10 11
|
readdcld |
|- ( ph -> ( C + R ) e. RR ) |
14 |
10 6
|
ltsubrpd |
|- ( ph -> ( C - R ) < C ) |
15 |
10 6
|
ltaddrpd |
|- ( ph -> C < ( C + R ) ) |
16 |
12 10 13 14 15
|
lttrd |
|- ( ph -> ( C - R ) < ( C + R ) ) |
17 |
12 13 16
|
ltled |
|- ( ph -> ( C - R ) <_ ( C + R ) ) |
18 |
|
rescncf |
|- ( ( ( C - R ) [,] ( C + R ) ) C_ X -> ( F e. ( X -cn-> RR ) -> ( F |` ( ( C - R ) [,] ( C + R ) ) ) e. ( ( ( C - R ) [,] ( C + R ) ) -cn-> RR ) ) ) |
19 |
7 1 18
|
sylc |
|- ( ph -> ( F |` ( ( C - R ) [,] ( C + R ) ) ) e. ( ( ( C - R ) [,] ( C + R ) ) -cn-> RR ) ) |
20 |
12 13 17 19
|
evthicc2 |
|- ( ph -> E. x e. RR E. y e. RR ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) |
21 |
|
cncff |
|- ( F e. ( X -cn-> RR ) -> F : X --> RR ) |
22 |
1 21
|
syl |
|- ( ph -> F : X --> RR ) |
23 |
22 5
|
ffvelrnd |
|- ( ph -> ( F ` C ) e. RR ) |
24 |
23
|
adantr |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( F ` C ) e. RR ) |
25 |
12
|
rexrd |
|- ( ph -> ( C - R ) e. RR* ) |
26 |
13
|
rexrd |
|- ( ph -> ( C + R ) e. RR* ) |
27 |
|
lbicc2 |
|- ( ( ( C - R ) e. RR* /\ ( C + R ) e. RR* /\ ( C - R ) <_ ( C + R ) ) -> ( C - R ) e. ( ( C - R ) [,] ( C + R ) ) ) |
28 |
25 26 17 27
|
syl3anc |
|- ( ph -> ( C - R ) e. ( ( C - R ) [,] ( C + R ) ) ) |
29 |
28
|
adantr |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( C - R ) e. ( ( C - R ) [,] ( C + R ) ) ) |
30 |
12 10 14
|
ltled |
|- ( ph -> ( C - R ) <_ C ) |
31 |
10 13 15
|
ltled |
|- ( ph -> C <_ ( C + R ) ) |
32 |
|
elicc2 |
|- ( ( ( C - R ) e. RR /\ ( C + R ) e. RR ) -> ( C e. ( ( C - R ) [,] ( C + R ) ) <-> ( C e. RR /\ ( C - R ) <_ C /\ C <_ ( C + R ) ) ) ) |
33 |
12 13 32
|
syl2anc |
|- ( ph -> ( C e. ( ( C - R ) [,] ( C + R ) ) <-> ( C e. RR /\ ( C - R ) <_ C /\ C <_ ( C + R ) ) ) ) |
34 |
10 30 31 33
|
mpbir3and |
|- ( ph -> C e. ( ( C - R ) [,] ( C + R ) ) ) |
35 |
34
|
adantr |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> C e. ( ( C - R ) [,] ( C + R ) ) ) |
36 |
14
|
adantr |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( C - R ) < C ) |
37 |
|
isorel |
|- ( ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) /\ ( ( C - R ) e. ( ( C - R ) [,] ( C + R ) ) /\ C e. ( ( C - R ) [,] ( C + R ) ) ) ) -> ( ( C - R ) < C <-> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C - R ) ) < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) ) ) |
38 |
37
|
biimpd |
|- ( ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) /\ ( ( C - R ) e. ( ( C - R ) [,] ( C + R ) ) /\ C e. ( ( C - R ) [,] ( C + R ) ) ) ) -> ( ( C - R ) < C -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C - R ) ) < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) ) ) |
39 |
38
|
exp32 |
|- ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) -> ( ( C - R ) e. ( ( C - R ) [,] ( C + R ) ) -> ( C e. ( ( C - R ) [,] ( C + R ) ) -> ( ( C - R ) < C -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C - R ) ) < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) ) ) ) ) |
40 |
39
|
com4l |
|- ( ( C - R ) e. ( ( C - R ) [,] ( C + R ) ) -> ( C e. ( ( C - R ) [,] ( C + R ) ) -> ( ( C - R ) < C -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C - R ) ) < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) ) ) ) ) |
41 |
29 35 36 40
|
syl3c |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C - R ) ) < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) ) ) |
42 |
29
|
fvresd |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C - R ) ) = ( F ` ( C - R ) ) ) |
43 |
35
|
fvresd |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) = ( F ` C ) ) |
44 |
42 43
|
breq12d |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C - R ) ) < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) <-> ( F ` ( C - R ) ) < ( F ` C ) ) ) |
45 |
41 44
|
sylibd |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) -> ( F ` ( C - R ) ) < ( F ` C ) ) ) |
46 |
22
|
adantr |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> F : X --> RR ) |
47 |
46
|
ffund |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> Fun F ) |
48 |
7
|
adantr |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( C - R ) [,] ( C + R ) ) C_ X ) |
49 |
46
|
fdmd |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> dom F = X ) |
50 |
48 49
|
sseqtrrd |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( C - R ) [,] ( C + R ) ) C_ dom F ) |
51 |
|
funfvima2 |
|- ( ( Fun F /\ ( ( C - R ) [,] ( C + R ) ) C_ dom F ) -> ( ( C - R ) e. ( ( C - R ) [,] ( C + R ) ) -> ( F ` ( C - R ) ) e. ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
52 |
47 50 51
|
syl2anc |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( C - R ) e. ( ( C - R ) [,] ( C + R ) ) -> ( F ` ( C - R ) ) e. ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
53 |
29 52
|
mpd |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( F ` ( C - R ) ) e. ( F " ( ( C - R ) [,] ( C + R ) ) ) ) |
54 |
|
df-ima |
|- ( F " ( ( C - R ) [,] ( C + R ) ) ) = ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) |
55 |
|
simprr |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) |
56 |
54 55
|
eqtrid |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( F " ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) |
57 |
53 56
|
eleqtrd |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( F ` ( C - R ) ) e. ( x [,] y ) ) |
58 |
|
elicc2 |
|- ( ( x e. RR /\ y e. RR ) -> ( ( F ` ( C - R ) ) e. ( x [,] y ) <-> ( ( F ` ( C - R ) ) e. RR /\ x <_ ( F ` ( C - R ) ) /\ ( F ` ( C - R ) ) <_ y ) ) ) |
59 |
58
|
ad2antrl |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F ` ( C - R ) ) e. ( x [,] y ) <-> ( ( F ` ( C - R ) ) e. RR /\ x <_ ( F ` ( C - R ) ) /\ ( F ` ( C - R ) ) <_ y ) ) ) |
60 |
57 59
|
mpbid |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F ` ( C - R ) ) e. RR /\ x <_ ( F ` ( C - R ) ) /\ ( F ` ( C - R ) ) <_ y ) ) |
61 |
60
|
simp2d |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> x <_ ( F ` ( C - R ) ) ) |
62 |
|
simprll |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> x e. RR ) |
63 |
7 28
|
sseldd |
|- ( ph -> ( C - R ) e. X ) |
64 |
22 63
|
ffvelrnd |
|- ( ph -> ( F ` ( C - R ) ) e. RR ) |
65 |
64
|
adantr |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( F ` ( C - R ) ) e. RR ) |
66 |
|
lelttr |
|- ( ( x e. RR /\ ( F ` ( C - R ) ) e. RR /\ ( F ` C ) e. RR ) -> ( ( x <_ ( F ` ( C - R ) ) /\ ( F ` ( C - R ) ) < ( F ` C ) ) -> x < ( F ` C ) ) ) |
67 |
62 65 24 66
|
syl3anc |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( x <_ ( F ` ( C - R ) ) /\ ( F ` ( C - R ) ) < ( F ` C ) ) -> x < ( F ` C ) ) ) |
68 |
61 67
|
mpand |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F ` ( C - R ) ) < ( F ` C ) -> x < ( F ` C ) ) ) |
69 |
45 68
|
syld |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) -> x < ( F ` C ) ) ) |
70 |
|
ubicc2 |
|- ( ( ( C - R ) e. RR* /\ ( C + R ) e. RR* /\ ( C - R ) <_ ( C + R ) ) -> ( C + R ) e. ( ( C - R ) [,] ( C + R ) ) ) |
71 |
25 26 17 70
|
syl3anc |
|- ( ph -> ( C + R ) e. ( ( C - R ) [,] ( C + R ) ) ) |
72 |
71
|
adantr |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( C + R ) e. ( ( C - R ) [,] ( C + R ) ) ) |
73 |
15
|
adantr |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> C < ( C + R ) ) |
74 |
|
isorel |
|- ( ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , `' < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) /\ ( C e. ( ( C - R ) [,] ( C + R ) ) /\ ( C + R ) e. ( ( C - R ) [,] ( C + R ) ) ) ) -> ( C < ( C + R ) <-> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) `' < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C + R ) ) ) ) |
75 |
74
|
biimpd |
|- ( ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , `' < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) /\ ( C e. ( ( C - R ) [,] ( C + R ) ) /\ ( C + R ) e. ( ( C - R ) [,] ( C + R ) ) ) ) -> ( C < ( C + R ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) `' < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C + R ) ) ) ) |
76 |
75
|
exp32 |
|- ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , `' < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) -> ( C e. ( ( C - R ) [,] ( C + R ) ) -> ( ( C + R ) e. ( ( C - R ) [,] ( C + R ) ) -> ( C < ( C + R ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) `' < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C + R ) ) ) ) ) ) |
77 |
76
|
com4l |
|- ( C e. ( ( C - R ) [,] ( C + R ) ) -> ( ( C + R ) e. ( ( C - R ) [,] ( C + R ) ) -> ( C < ( C + R ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , `' < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) `' < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C + R ) ) ) ) ) ) |
78 |
35 72 73 77
|
syl3c |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , `' < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) `' < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C + R ) ) ) ) |
79 |
|
fvex |
|- ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) e. _V |
80 |
|
fvex |
|- ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C + R ) ) e. _V |
81 |
79 80
|
brcnv |
|- ( ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) `' < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C + R ) ) <-> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C + R ) ) < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) ) |
82 |
72
|
fvresd |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C + R ) ) = ( F ` ( C + R ) ) ) |
83 |
82 43
|
breq12d |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C + R ) ) < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) <-> ( F ` ( C + R ) ) < ( F ` C ) ) ) |
84 |
81 83
|
syl5bb |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) `' < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C + R ) ) <-> ( F ` ( C + R ) ) < ( F ` C ) ) ) |
85 |
78 84
|
sylibd |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , `' < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) -> ( F ` ( C + R ) ) < ( F ` C ) ) ) |
86 |
|
funfvima2 |
|- ( ( Fun F /\ ( ( C - R ) [,] ( C + R ) ) C_ dom F ) -> ( ( C + R ) e. ( ( C - R ) [,] ( C + R ) ) -> ( F ` ( C + R ) ) e. ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
87 |
47 50 86
|
syl2anc |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( C + R ) e. ( ( C - R ) [,] ( C + R ) ) -> ( F ` ( C + R ) ) e. ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
88 |
72 87
|
mpd |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( F ` ( C + R ) ) e. ( F " ( ( C - R ) [,] ( C + R ) ) ) ) |
89 |
88 56
|
eleqtrd |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( F ` ( C + R ) ) e. ( x [,] y ) ) |
90 |
|
elicc2 |
|- ( ( x e. RR /\ y e. RR ) -> ( ( F ` ( C + R ) ) e. ( x [,] y ) <-> ( ( F ` ( C + R ) ) e. RR /\ x <_ ( F ` ( C + R ) ) /\ ( F ` ( C + R ) ) <_ y ) ) ) |
91 |
90
|
ad2antrl |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F ` ( C + R ) ) e. ( x [,] y ) <-> ( ( F ` ( C + R ) ) e. RR /\ x <_ ( F ` ( C + R ) ) /\ ( F ` ( C + R ) ) <_ y ) ) ) |
92 |
89 91
|
mpbid |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F ` ( C + R ) ) e. RR /\ x <_ ( F ` ( C + R ) ) /\ ( F ` ( C + R ) ) <_ y ) ) |
93 |
92
|
simp2d |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> x <_ ( F ` ( C + R ) ) ) |
94 |
7 71
|
sseldd |
|- ( ph -> ( C + R ) e. X ) |
95 |
22 94
|
ffvelrnd |
|- ( ph -> ( F ` ( C + R ) ) e. RR ) |
96 |
95
|
adantr |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( F ` ( C + R ) ) e. RR ) |
97 |
|
lelttr |
|- ( ( x e. RR /\ ( F ` ( C + R ) ) e. RR /\ ( F ` C ) e. RR ) -> ( ( x <_ ( F ` ( C + R ) ) /\ ( F ` ( C + R ) ) < ( F ` C ) ) -> x < ( F ` C ) ) ) |
98 |
62 96 24 97
|
syl3anc |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( x <_ ( F ` ( C + R ) ) /\ ( F ` ( C + R ) ) < ( F ` C ) ) -> x < ( F ` C ) ) ) |
99 |
93 98
|
mpand |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F ` ( C + R ) ) < ( F ` C ) -> x < ( F ` C ) ) ) |
100 |
85 99
|
syld |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , `' < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) -> x < ( F ` C ) ) ) |
101 |
|
ax-resscn |
|- RR C_ CC |
102 |
101
|
a1i |
|- ( ph -> RR C_ CC ) |
103 |
|
fss |
|- ( ( F : X --> RR /\ RR C_ CC ) -> F : X --> CC ) |
104 |
22 101 103
|
sylancl |
|- ( ph -> F : X --> CC ) |
105 |
7 9
|
sstrd |
|- ( ph -> ( ( C - R ) [,] ( C + R ) ) C_ RR ) |
106 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
107 |
106
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
108 |
106 107
|
dvres |
|- ( ( ( RR C_ CC /\ F : X --> CC ) /\ ( X C_ RR /\ ( ( C - R ) [,] ( C + R ) ) C_ RR ) ) -> ( RR _D ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( C - R ) [,] ( C + R ) ) ) ) ) |
109 |
102 104 9 105 108
|
syl22anc |
|- ( ph -> ( RR _D ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( C - R ) [,] ( C + R ) ) ) ) ) |
110 |
|
iccntr |
|- ( ( ( C - R ) e. RR /\ ( C + R ) e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( ( C - R ) [,] ( C + R ) ) ) = ( ( C - R ) (,) ( C + R ) ) ) |
111 |
12 13 110
|
syl2anc |
|- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( ( C - R ) [,] ( C + R ) ) ) = ( ( C - R ) (,) ( C + R ) ) ) |
112 |
111
|
reseq2d |
|- ( ph -> ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( C - R ) [,] ( C + R ) ) ) ) = ( ( RR _D F ) |` ( ( C - R ) (,) ( C + R ) ) ) ) |
113 |
109 112
|
eqtrd |
|- ( ph -> ( RR _D ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) = ( ( RR _D F ) |` ( ( C - R ) (,) ( C + R ) ) ) ) |
114 |
113
|
dmeqd |
|- ( ph -> dom ( RR _D ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) = dom ( ( RR _D F ) |` ( ( C - R ) (,) ( C + R ) ) ) ) |
115 |
|
dmres |
|- dom ( ( RR _D F ) |` ( ( C - R ) (,) ( C + R ) ) ) = ( ( ( C - R ) (,) ( C + R ) ) i^i dom ( RR _D F ) ) |
116 |
|
ioossicc |
|- ( ( C - R ) (,) ( C + R ) ) C_ ( ( C - R ) [,] ( C + R ) ) |
117 |
116 7
|
sstrid |
|- ( ph -> ( ( C - R ) (,) ( C + R ) ) C_ X ) |
118 |
117 2
|
sseqtrrd |
|- ( ph -> ( ( C - R ) (,) ( C + R ) ) C_ dom ( RR _D F ) ) |
119 |
|
df-ss |
|- ( ( ( C - R ) (,) ( C + R ) ) C_ dom ( RR _D F ) <-> ( ( ( C - R ) (,) ( C + R ) ) i^i dom ( RR _D F ) ) = ( ( C - R ) (,) ( C + R ) ) ) |
120 |
118 119
|
sylib |
|- ( ph -> ( ( ( C - R ) (,) ( C + R ) ) i^i dom ( RR _D F ) ) = ( ( C - R ) (,) ( C + R ) ) ) |
121 |
115 120
|
eqtrid |
|- ( ph -> dom ( ( RR _D F ) |` ( ( C - R ) (,) ( C + R ) ) ) = ( ( C - R ) (,) ( C + R ) ) ) |
122 |
114 121
|
eqtrd |
|- ( ph -> dom ( RR _D ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) = ( ( C - R ) (,) ( C + R ) ) ) |
123 |
|
resss |
|- ( ( RR _D F ) |` ( ( C - R ) (,) ( C + R ) ) ) C_ ( RR _D F ) |
124 |
113 123
|
eqsstrdi |
|- ( ph -> ( RR _D ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) C_ ( RR _D F ) ) |
125 |
|
rnss |
|- ( ( RR _D ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) C_ ( RR _D F ) -> ran ( RR _D ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) C_ ran ( RR _D F ) ) |
126 |
124 125
|
syl |
|- ( ph -> ran ( RR _D ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) C_ ran ( RR _D F ) ) |
127 |
126 3
|
ssneldd |
|- ( ph -> -. 0 e. ran ( RR _D ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) ) |
128 |
12 13 19 122 127
|
dvne0 |
|- ( ph -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) \/ ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , `' < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) ) ) |
129 |
128
|
adantr |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) \/ ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , `' < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) ) ) |
130 |
69 100 129
|
mpjaod |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> x < ( F ` C ) ) |
131 |
|
isorel |
|- ( ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) /\ ( C e. ( ( C - R ) [,] ( C + R ) ) /\ ( C + R ) e. ( ( C - R ) [,] ( C + R ) ) ) ) -> ( C < ( C + R ) <-> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C + R ) ) ) ) |
132 |
131
|
biimpd |
|- ( ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) /\ ( C e. ( ( C - R ) [,] ( C + R ) ) /\ ( C + R ) e. ( ( C - R ) [,] ( C + R ) ) ) ) -> ( C < ( C + R ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C + R ) ) ) ) |
133 |
132
|
exp32 |
|- ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) -> ( C e. ( ( C - R ) [,] ( C + R ) ) -> ( ( C + R ) e. ( ( C - R ) [,] ( C + R ) ) -> ( C < ( C + R ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C + R ) ) ) ) ) ) |
134 |
133
|
com4l |
|- ( C e. ( ( C - R ) [,] ( C + R ) ) -> ( ( C + R ) e. ( ( C - R ) [,] ( C + R ) ) -> ( C < ( C + R ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C + R ) ) ) ) ) ) |
135 |
35 72 73 134
|
syl3c |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C + R ) ) ) ) |
136 |
43 82
|
breq12d |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C + R ) ) <-> ( F ` C ) < ( F ` ( C + R ) ) ) ) |
137 |
135 136
|
sylibd |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) -> ( F ` C ) < ( F ` ( C + R ) ) ) ) |
138 |
92
|
simp3d |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( F ` ( C + R ) ) <_ y ) |
139 |
|
simprlr |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> y e. RR ) |
140 |
|
ltletr |
|- ( ( ( F ` C ) e. RR /\ ( F ` ( C + R ) ) e. RR /\ y e. RR ) -> ( ( ( F ` C ) < ( F ` ( C + R ) ) /\ ( F ` ( C + R ) ) <_ y ) -> ( F ` C ) < y ) ) |
141 |
24 96 139 140
|
syl3anc |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( ( F ` C ) < ( F ` ( C + R ) ) /\ ( F ` ( C + R ) ) <_ y ) -> ( F ` C ) < y ) ) |
142 |
138 141
|
mpan2d |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F ` C ) < ( F ` ( C + R ) ) -> ( F ` C ) < y ) ) |
143 |
137 142
|
syld |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) -> ( F ` C ) < y ) ) |
144 |
|
isorel |
|- ( ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , `' < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) /\ ( ( C - R ) e. ( ( C - R ) [,] ( C + R ) ) /\ C e. ( ( C - R ) [,] ( C + R ) ) ) ) -> ( ( C - R ) < C <-> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C - R ) ) `' < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) ) ) |
145 |
144
|
biimpd |
|- ( ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , `' < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) /\ ( ( C - R ) e. ( ( C - R ) [,] ( C + R ) ) /\ C e. ( ( C - R ) [,] ( C + R ) ) ) ) -> ( ( C - R ) < C -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C - R ) ) `' < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) ) ) |
146 |
145
|
exp32 |
|- ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , `' < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) -> ( ( C - R ) e. ( ( C - R ) [,] ( C + R ) ) -> ( C e. ( ( C - R ) [,] ( C + R ) ) -> ( ( C - R ) < C -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C - R ) ) `' < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) ) ) ) ) |
147 |
146
|
com4l |
|- ( ( C - R ) e. ( ( C - R ) [,] ( C + R ) ) -> ( C e. ( ( C - R ) [,] ( C + R ) ) -> ( ( C - R ) < C -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , `' < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C - R ) ) `' < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) ) ) ) ) |
148 |
29 35 36 147
|
syl3c |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , `' < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C - R ) ) `' < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) ) ) |
149 |
|
fvex |
|- ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C - R ) ) e. _V |
150 |
149 79
|
brcnv |
|- ( ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C - R ) ) `' < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) <-> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C - R ) ) ) |
151 |
43 42
|
breq12d |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C - R ) ) <-> ( F ` C ) < ( F ` ( C - R ) ) ) ) |
152 |
150 151
|
syl5bb |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C - R ) ) `' < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) <-> ( F ` C ) < ( F ` ( C - R ) ) ) ) |
153 |
148 152
|
sylibd |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , `' < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) -> ( F ` C ) < ( F ` ( C - R ) ) ) ) |
154 |
60
|
simp3d |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( F ` ( C - R ) ) <_ y ) |
155 |
|
ltletr |
|- ( ( ( F ` C ) e. RR /\ ( F ` ( C - R ) ) e. RR /\ y e. RR ) -> ( ( ( F ` C ) < ( F ` ( C - R ) ) /\ ( F ` ( C - R ) ) <_ y ) -> ( F ` C ) < y ) ) |
156 |
24 65 139 155
|
syl3anc |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( ( F ` C ) < ( F ` ( C - R ) ) /\ ( F ` ( C - R ) ) <_ y ) -> ( F ` C ) < y ) ) |
157 |
154 156
|
mpan2d |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F ` C ) < ( F ` ( C - R ) ) -> ( F ` C ) < y ) ) |
158 |
153 157
|
syld |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , `' < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) -> ( F ` C ) < y ) ) |
159 |
143 158 129
|
mpjaod |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( F ` C ) < y ) |
160 |
62
|
rexrd |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> x e. RR* ) |
161 |
139
|
rexrd |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> y e. RR* ) |
162 |
|
elioo2 |
|- ( ( x e. RR* /\ y e. RR* ) -> ( ( F ` C ) e. ( x (,) y ) <-> ( ( F ` C ) e. RR /\ x < ( F ` C ) /\ ( F ` C ) < y ) ) ) |
163 |
160 161 162
|
syl2anc |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F ` C ) e. ( x (,) y ) <-> ( ( F ` C ) e. RR /\ x < ( F ` C ) /\ ( F ` C ) < y ) ) ) |
164 |
24 130 159 163
|
mpbir3and |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( F ` C ) e. ( x (,) y ) ) |
165 |
56
|
fveq2d |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) = ( ( int ` ( topGen ` ran (,) ) ) ` ( x [,] y ) ) ) |
166 |
|
iccntr |
|- ( ( x e. RR /\ y e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( x [,] y ) ) = ( x (,) y ) ) |
167 |
166
|
ad2antrl |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( x [,] y ) ) = ( x (,) y ) ) |
168 |
165 167
|
eqtrd |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) = ( x (,) y ) ) |
169 |
164 168
|
eleqtrrd |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( F ` C ) e. ( ( int ` ( topGen ` ran (,) ) ) ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
170 |
169
|
expr |
|- ( ( ph /\ ( x e. RR /\ y e. RR ) ) -> ( ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) -> ( F ` C ) e. ( ( int ` ( topGen ` ran (,) ) ) ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) ) |
171 |
170
|
rexlimdvva |
|- ( ph -> ( E. x e. RR E. y e. RR ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) -> ( F ` C ) e. ( ( int ` ( topGen ` ran (,) ) ) ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) ) |
172 |
20 171
|
mpd |
|- ( ph -> ( F ` C ) e. ( ( int ` ( topGen ` ran (,) ) ) ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |