| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvcnvre.f |
|- ( ph -> F e. ( X -cn-> RR ) ) |
| 2 |
|
dvcnvre.d |
|- ( ph -> dom ( RR _D F ) = X ) |
| 3 |
|
dvcnvre.z |
|- ( ph -> -. 0 e. ran ( RR _D F ) ) |
| 4 |
|
dvcnvre.1 |
|- ( ph -> F : X -1-1-onto-> Y ) |
| 5 |
|
dvcnvre.c |
|- ( ph -> C e. X ) |
| 6 |
|
dvcnvre.r |
|- ( ph -> R e. RR+ ) |
| 7 |
|
dvcnvre.s |
|- ( ph -> ( ( C - R ) [,] ( C + R ) ) C_ X ) |
| 8 |
|
dvcnvre.t |
|- T = ( topGen ` ran (,) ) |
| 9 |
|
dvcnvre.j |
|- J = ( TopOpen ` CCfld ) |
| 10 |
|
dvcnvre.m |
|- M = ( J |`t X ) |
| 11 |
|
dvcnvre.n |
|- N = ( J |`t Y ) |
| 12 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
| 13 |
8 12
|
eqeltri |
|- T e. Top |
| 14 |
|
f1ofo |
|- ( F : X -1-1-onto-> Y -> F : X -onto-> Y ) |
| 15 |
|
forn |
|- ( F : X -onto-> Y -> ran F = Y ) |
| 16 |
4 14 15
|
3syl |
|- ( ph -> ran F = Y ) |
| 17 |
|
cncff |
|- ( F e. ( X -cn-> RR ) -> F : X --> RR ) |
| 18 |
|
frn |
|- ( F : X --> RR -> ran F C_ RR ) |
| 19 |
1 17 18
|
3syl |
|- ( ph -> ran F C_ RR ) |
| 20 |
16 19
|
eqsstrrd |
|- ( ph -> Y C_ RR ) |
| 21 |
|
imassrn |
|- ( F " ( ( C - R ) [,] ( C + R ) ) ) C_ ran F |
| 22 |
21 16
|
sseqtrid |
|- ( ph -> ( F " ( ( C - R ) [,] ( C + R ) ) ) C_ Y ) |
| 23 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
| 24 |
8
|
unieqi |
|- U. T = U. ( topGen ` ran (,) ) |
| 25 |
23 24
|
eqtr4i |
|- RR = U. T |
| 26 |
25
|
ntrss |
|- ( ( T e. Top /\ Y C_ RR /\ ( F " ( ( C - R ) [,] ( C + R ) ) ) C_ Y ) -> ( ( int ` T ) ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) C_ ( ( int ` T ) ` Y ) ) |
| 27 |
13 20 22 26
|
mp3an2i |
|- ( ph -> ( ( int ` T ) ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) C_ ( ( int ` T ) ` Y ) ) |
| 28 |
1 2 3 4 5 6 7
|
dvcnvrelem1 |
|- ( ph -> ( F ` C ) e. ( ( int ` ( topGen ` ran (,) ) ) ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
| 29 |
8
|
fveq2i |
|- ( int ` T ) = ( int ` ( topGen ` ran (,) ) ) |
| 30 |
29
|
fveq1i |
|- ( ( int ` T ) ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) = ( ( int ` ( topGen ` ran (,) ) ) ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) |
| 31 |
28 30
|
eleqtrrdi |
|- ( ph -> ( F ` C ) e. ( ( int ` T ) ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
| 32 |
27 31
|
sseldd |
|- ( ph -> ( F ` C ) e. ( ( int ` T ) ` Y ) ) |
| 33 |
|
f1ocnv |
|- ( F : X -1-1-onto-> Y -> `' F : Y -1-1-onto-> X ) |
| 34 |
|
f1of |
|- ( `' F : Y -1-1-onto-> X -> `' F : Y --> X ) |
| 35 |
4 33 34
|
3syl |
|- ( ph -> `' F : Y --> X ) |
| 36 |
|
ffun |
|- ( `' F : Y --> X -> Fun `' F ) |
| 37 |
|
funcnvres |
|- ( Fun `' F -> `' ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( `' F |` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
| 38 |
35 36 37
|
3syl |
|- ( ph -> `' ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( `' F |` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
| 39 |
|
dvbsss |
|- dom ( RR _D F ) C_ RR |
| 40 |
2 39
|
eqsstrrdi |
|- ( ph -> X C_ RR ) |
| 41 |
|
ax-resscn |
|- RR C_ CC |
| 42 |
40 41
|
sstrdi |
|- ( ph -> X C_ CC ) |
| 43 |
|
cncfss |
|- ( ( ( ( C - R ) [,] ( C + R ) ) C_ X /\ X C_ CC ) -> ( ( F " ( ( C - R ) [,] ( C + R ) ) ) -cn-> ( ( C - R ) [,] ( C + R ) ) ) C_ ( ( F " ( ( C - R ) [,] ( C + R ) ) ) -cn-> X ) ) |
| 44 |
7 42 43
|
syl2anc |
|- ( ph -> ( ( F " ( ( C - R ) [,] ( C + R ) ) ) -cn-> ( ( C - R ) [,] ( C + R ) ) ) C_ ( ( F " ( ( C - R ) [,] ( C + R ) ) ) -cn-> X ) ) |
| 45 |
|
f1of1 |
|- ( F : X -1-1-onto-> Y -> F : X -1-1-> Y ) |
| 46 |
4 45
|
syl |
|- ( ph -> F : X -1-1-> Y ) |
| 47 |
|
f1ores |
|- ( ( F : X -1-1-> Y /\ ( ( C - R ) [,] ( C + R ) ) C_ X ) -> ( F |` ( ( C - R ) [,] ( C + R ) ) ) : ( ( C - R ) [,] ( C + R ) ) -1-1-onto-> ( F " ( ( C - R ) [,] ( C + R ) ) ) ) |
| 48 |
46 7 47
|
syl2anc |
|- ( ph -> ( F |` ( ( C - R ) [,] ( C + R ) ) ) : ( ( C - R ) [,] ( C + R ) ) -1-1-onto-> ( F " ( ( C - R ) [,] ( C + R ) ) ) ) |
| 49 |
9
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( J |`t RR ) |
| 50 |
8 49
|
eqtri |
|- T = ( J |`t RR ) |
| 51 |
50
|
oveq1i |
|- ( T |`t ( ( C - R ) [,] ( C + R ) ) ) = ( ( J |`t RR ) |`t ( ( C - R ) [,] ( C + R ) ) ) |
| 52 |
9
|
cnfldtop |
|- J e. Top |
| 53 |
7 40
|
sstrd |
|- ( ph -> ( ( C - R ) [,] ( C + R ) ) C_ RR ) |
| 54 |
|
reex |
|- RR e. _V |
| 55 |
54
|
a1i |
|- ( ph -> RR e. _V ) |
| 56 |
|
restabs |
|- ( ( J e. Top /\ ( ( C - R ) [,] ( C + R ) ) C_ RR /\ RR e. _V ) -> ( ( J |`t RR ) |`t ( ( C - R ) [,] ( C + R ) ) ) = ( J |`t ( ( C - R ) [,] ( C + R ) ) ) ) |
| 57 |
52 53 55 56
|
mp3an2i |
|- ( ph -> ( ( J |`t RR ) |`t ( ( C - R ) [,] ( C + R ) ) ) = ( J |`t ( ( C - R ) [,] ( C + R ) ) ) ) |
| 58 |
51 57
|
eqtrid |
|- ( ph -> ( T |`t ( ( C - R ) [,] ( C + R ) ) ) = ( J |`t ( ( C - R ) [,] ( C + R ) ) ) ) |
| 59 |
40 5
|
sseldd |
|- ( ph -> C e. RR ) |
| 60 |
6
|
rpred |
|- ( ph -> R e. RR ) |
| 61 |
59 60
|
resubcld |
|- ( ph -> ( C - R ) e. RR ) |
| 62 |
59 60
|
readdcld |
|- ( ph -> ( C + R ) e. RR ) |
| 63 |
|
eqid |
|- ( T |`t ( ( C - R ) [,] ( C + R ) ) ) = ( T |`t ( ( C - R ) [,] ( C + R ) ) ) |
| 64 |
8 63
|
icccmp |
|- ( ( ( C - R ) e. RR /\ ( C + R ) e. RR ) -> ( T |`t ( ( C - R ) [,] ( C + R ) ) ) e. Comp ) |
| 65 |
61 62 64
|
syl2anc |
|- ( ph -> ( T |`t ( ( C - R ) [,] ( C + R ) ) ) e. Comp ) |
| 66 |
58 65
|
eqeltrrd |
|- ( ph -> ( J |`t ( ( C - R ) [,] ( C + R ) ) ) e. Comp ) |
| 67 |
|
f1of |
|- ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) : ( ( C - R ) [,] ( C + R ) ) -1-1-onto-> ( F " ( ( C - R ) [,] ( C + R ) ) ) -> ( F |` ( ( C - R ) [,] ( C + R ) ) ) : ( ( C - R ) [,] ( C + R ) ) --> ( F " ( ( C - R ) [,] ( C + R ) ) ) ) |
| 68 |
48 67
|
syl |
|- ( ph -> ( F |` ( ( C - R ) [,] ( C + R ) ) ) : ( ( C - R ) [,] ( C + R ) ) --> ( F " ( ( C - R ) [,] ( C + R ) ) ) ) |
| 69 |
19 41
|
sstrdi |
|- ( ph -> ran F C_ CC ) |
| 70 |
21 69
|
sstrid |
|- ( ph -> ( F " ( ( C - R ) [,] ( C + R ) ) ) C_ CC ) |
| 71 |
|
rescncf |
|- ( ( ( C - R ) [,] ( C + R ) ) C_ X -> ( F e. ( X -cn-> RR ) -> ( F |` ( ( C - R ) [,] ( C + R ) ) ) e. ( ( ( C - R ) [,] ( C + R ) ) -cn-> RR ) ) ) |
| 72 |
7 1 71
|
sylc |
|- ( ph -> ( F |` ( ( C - R ) [,] ( C + R ) ) ) e. ( ( ( C - R ) [,] ( C + R ) ) -cn-> RR ) ) |
| 73 |
|
cncfcdm |
|- ( ( ( F " ( ( C - R ) [,] ( C + R ) ) ) C_ CC /\ ( F |` ( ( C - R ) [,] ( C + R ) ) ) e. ( ( ( C - R ) [,] ( C + R ) ) -cn-> RR ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) e. ( ( ( C - R ) [,] ( C + R ) ) -cn-> ( F " ( ( C - R ) [,] ( C + R ) ) ) ) <-> ( F |` ( ( C - R ) [,] ( C + R ) ) ) : ( ( C - R ) [,] ( C + R ) ) --> ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
| 74 |
70 72 73
|
syl2anc |
|- ( ph -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) e. ( ( ( C - R ) [,] ( C + R ) ) -cn-> ( F " ( ( C - R ) [,] ( C + R ) ) ) ) <-> ( F |` ( ( C - R ) [,] ( C + R ) ) ) : ( ( C - R ) [,] ( C + R ) ) --> ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
| 75 |
68 74
|
mpbird |
|- ( ph -> ( F |` ( ( C - R ) [,] ( C + R ) ) ) e. ( ( ( C - R ) [,] ( C + R ) ) -cn-> ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
| 76 |
|
eqid |
|- ( J |`t ( ( C - R ) [,] ( C + R ) ) ) = ( J |`t ( ( C - R ) [,] ( C + R ) ) ) |
| 77 |
9 76
|
cncfcnvcn |
|- ( ( ( J |`t ( ( C - R ) [,] ( C + R ) ) ) e. Comp /\ ( F |` ( ( C - R ) [,] ( C + R ) ) ) e. ( ( ( C - R ) [,] ( C + R ) ) -cn-> ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) : ( ( C - R ) [,] ( C + R ) ) -1-1-onto-> ( F " ( ( C - R ) [,] ( C + R ) ) ) <-> `' ( F |` ( ( C - R ) [,] ( C + R ) ) ) e. ( ( F " ( ( C - R ) [,] ( C + R ) ) ) -cn-> ( ( C - R ) [,] ( C + R ) ) ) ) ) |
| 78 |
66 75 77
|
syl2anc |
|- ( ph -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) : ( ( C - R ) [,] ( C + R ) ) -1-1-onto-> ( F " ( ( C - R ) [,] ( C + R ) ) ) <-> `' ( F |` ( ( C - R ) [,] ( C + R ) ) ) e. ( ( F " ( ( C - R ) [,] ( C + R ) ) ) -cn-> ( ( C - R ) [,] ( C + R ) ) ) ) ) |
| 79 |
48 78
|
mpbid |
|- ( ph -> `' ( F |` ( ( C - R ) [,] ( C + R ) ) ) e. ( ( F " ( ( C - R ) [,] ( C + R ) ) ) -cn-> ( ( C - R ) [,] ( C + R ) ) ) ) |
| 80 |
44 79
|
sseldd |
|- ( ph -> `' ( F |` ( ( C - R ) [,] ( C + R ) ) ) e. ( ( F " ( ( C - R ) [,] ( C + R ) ) ) -cn-> X ) ) |
| 81 |
|
eqid |
|- ( J |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) = ( J |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) |
| 82 |
9 81 10
|
cncfcn |
|- ( ( ( F " ( ( C - R ) [,] ( C + R ) ) ) C_ CC /\ X C_ CC ) -> ( ( F " ( ( C - R ) [,] ( C + R ) ) ) -cn-> X ) = ( ( J |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) Cn M ) ) |
| 83 |
70 42 82
|
syl2anc |
|- ( ph -> ( ( F " ( ( C - R ) [,] ( C + R ) ) ) -cn-> X ) = ( ( J |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) Cn M ) ) |
| 84 |
80 83
|
eleqtrd |
|- ( ph -> `' ( F |` ( ( C - R ) [,] ( C + R ) ) ) e. ( ( J |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) Cn M ) ) |
| 85 |
59 6
|
ltsubrpd |
|- ( ph -> ( C - R ) < C ) |
| 86 |
61 59 85
|
ltled |
|- ( ph -> ( C - R ) <_ C ) |
| 87 |
59 6
|
ltaddrpd |
|- ( ph -> C < ( C + R ) ) |
| 88 |
59 62 87
|
ltled |
|- ( ph -> C <_ ( C + R ) ) |
| 89 |
|
elicc2 |
|- ( ( ( C - R ) e. RR /\ ( C + R ) e. RR ) -> ( C e. ( ( C - R ) [,] ( C + R ) ) <-> ( C e. RR /\ ( C - R ) <_ C /\ C <_ ( C + R ) ) ) ) |
| 90 |
61 62 89
|
syl2anc |
|- ( ph -> ( C e. ( ( C - R ) [,] ( C + R ) ) <-> ( C e. RR /\ ( C - R ) <_ C /\ C <_ ( C + R ) ) ) ) |
| 91 |
59 86 88 90
|
mpbir3and |
|- ( ph -> C e. ( ( C - R ) [,] ( C + R ) ) ) |
| 92 |
|
ffun |
|- ( F : X --> RR -> Fun F ) |
| 93 |
1 17 92
|
3syl |
|- ( ph -> Fun F ) |
| 94 |
|
fdm |
|- ( F : X --> RR -> dom F = X ) |
| 95 |
1 17 94
|
3syl |
|- ( ph -> dom F = X ) |
| 96 |
7 95
|
sseqtrrd |
|- ( ph -> ( ( C - R ) [,] ( C + R ) ) C_ dom F ) |
| 97 |
|
funfvima2 |
|- ( ( Fun F /\ ( ( C - R ) [,] ( C + R ) ) C_ dom F ) -> ( C e. ( ( C - R ) [,] ( C + R ) ) -> ( F ` C ) e. ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
| 98 |
93 96 97
|
syl2anc |
|- ( ph -> ( C e. ( ( C - R ) [,] ( C + R ) ) -> ( F ` C ) e. ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
| 99 |
91 98
|
mpd |
|- ( ph -> ( F ` C ) e. ( F " ( ( C - R ) [,] ( C + R ) ) ) ) |
| 100 |
9
|
cnfldtopon |
|- J e. ( TopOn ` CC ) |
| 101 |
|
resttopon |
|- ( ( J e. ( TopOn ` CC ) /\ ( F " ( ( C - R ) [,] ( C + R ) ) ) C_ CC ) -> ( J |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) e. ( TopOn ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
| 102 |
100 70 101
|
sylancr |
|- ( ph -> ( J |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) e. ( TopOn ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
| 103 |
|
toponuni |
|- ( ( J |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) e. ( TopOn ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) -> ( F " ( ( C - R ) [,] ( C + R ) ) ) = U. ( J |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
| 104 |
102 103
|
syl |
|- ( ph -> ( F " ( ( C - R ) [,] ( C + R ) ) ) = U. ( J |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
| 105 |
99 104
|
eleqtrd |
|- ( ph -> ( F ` C ) e. U. ( J |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
| 106 |
|
eqid |
|- U. ( J |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) = U. ( J |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) |
| 107 |
106
|
cncnpi |
|- ( ( `' ( F |` ( ( C - R ) [,] ( C + R ) ) ) e. ( ( J |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) Cn M ) /\ ( F ` C ) e. U. ( J |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) -> `' ( F |` ( ( C - R ) [,] ( C + R ) ) ) e. ( ( ( J |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) CnP M ) ` ( F ` C ) ) ) |
| 108 |
84 105 107
|
syl2anc |
|- ( ph -> `' ( F |` ( ( C - R ) [,] ( C + R ) ) ) e. ( ( ( J |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) CnP M ) ` ( F ` C ) ) ) |
| 109 |
38 108
|
eqeltrrd |
|- ( ph -> ( `' F |` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) e. ( ( ( J |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) CnP M ) ` ( F ` C ) ) ) |
| 110 |
11
|
oveq1i |
|- ( N |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) = ( ( J |`t Y ) |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) |
| 111 |
|
ssexg |
|- ( ( Y C_ RR /\ RR e. _V ) -> Y e. _V ) |
| 112 |
20 54 111
|
sylancl |
|- ( ph -> Y e. _V ) |
| 113 |
|
restabs |
|- ( ( J e. Top /\ ( F " ( ( C - R ) [,] ( C + R ) ) ) C_ Y /\ Y e. _V ) -> ( ( J |`t Y ) |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) = ( J |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
| 114 |
52 22 112 113
|
mp3an2i |
|- ( ph -> ( ( J |`t Y ) |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) = ( J |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
| 115 |
110 114
|
eqtrid |
|- ( ph -> ( N |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) = ( J |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
| 116 |
115
|
oveq1d |
|- ( ph -> ( ( N |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) CnP M ) = ( ( J |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) CnP M ) ) |
| 117 |
116
|
fveq1d |
|- ( ph -> ( ( ( N |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) CnP M ) ` ( F ` C ) ) = ( ( ( J |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) CnP M ) ` ( F ` C ) ) ) |
| 118 |
109 117
|
eleqtrrd |
|- ( ph -> ( `' F |` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) e. ( ( ( N |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) CnP M ) ` ( F ` C ) ) ) |
| 119 |
20 41
|
sstrdi |
|- ( ph -> Y C_ CC ) |
| 120 |
|
resttopon |
|- ( ( J e. ( TopOn ` CC ) /\ Y C_ CC ) -> ( J |`t Y ) e. ( TopOn ` Y ) ) |
| 121 |
100 119 120
|
sylancr |
|- ( ph -> ( J |`t Y ) e. ( TopOn ` Y ) ) |
| 122 |
11 121
|
eqeltrid |
|- ( ph -> N e. ( TopOn ` Y ) ) |
| 123 |
|
topontop |
|- ( N e. ( TopOn ` Y ) -> N e. Top ) |
| 124 |
122 123
|
syl |
|- ( ph -> N e. Top ) |
| 125 |
|
toponuni |
|- ( N e. ( TopOn ` Y ) -> Y = U. N ) |
| 126 |
122 125
|
syl |
|- ( ph -> Y = U. N ) |
| 127 |
22 126
|
sseqtrd |
|- ( ph -> ( F " ( ( C - R ) [,] ( C + R ) ) ) C_ U. N ) |
| 128 |
22 20
|
sstrd |
|- ( ph -> ( F " ( ( C - R ) [,] ( C + R ) ) ) C_ RR ) |
| 129 |
|
difssd |
|- ( ph -> ( RR \ Y ) C_ RR ) |
| 130 |
128 129
|
unssd |
|- ( ph -> ( ( F " ( ( C - R ) [,] ( C + R ) ) ) u. ( RR \ Y ) ) C_ RR ) |
| 131 |
|
ssun1 |
|- ( F " ( ( C - R ) [,] ( C + R ) ) ) C_ ( ( F " ( ( C - R ) [,] ( C + R ) ) ) u. ( RR \ Y ) ) |
| 132 |
131
|
a1i |
|- ( ph -> ( F " ( ( C - R ) [,] ( C + R ) ) ) C_ ( ( F " ( ( C - R ) [,] ( C + R ) ) ) u. ( RR \ Y ) ) ) |
| 133 |
25
|
ntrss |
|- ( ( T e. Top /\ ( ( F " ( ( C - R ) [,] ( C + R ) ) ) u. ( RR \ Y ) ) C_ RR /\ ( F " ( ( C - R ) [,] ( C + R ) ) ) C_ ( ( F " ( ( C - R ) [,] ( C + R ) ) ) u. ( RR \ Y ) ) ) -> ( ( int ` T ) ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) C_ ( ( int ` T ) ` ( ( F " ( ( C - R ) [,] ( C + R ) ) ) u. ( RR \ Y ) ) ) ) |
| 134 |
13 130 132 133
|
mp3an2i |
|- ( ph -> ( ( int ` T ) ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) C_ ( ( int ` T ) ` ( ( F " ( ( C - R ) [,] ( C + R ) ) ) u. ( RR \ Y ) ) ) ) |
| 135 |
134 31
|
sseldd |
|- ( ph -> ( F ` C ) e. ( ( int ` T ) ` ( ( F " ( ( C - R ) [,] ( C + R ) ) ) u. ( RR \ Y ) ) ) ) |
| 136 |
|
f1of |
|- ( F : X -1-1-onto-> Y -> F : X --> Y ) |
| 137 |
4 136
|
syl |
|- ( ph -> F : X --> Y ) |
| 138 |
137 5
|
ffvelcdmd |
|- ( ph -> ( F ` C ) e. Y ) |
| 139 |
135 138
|
elind |
|- ( ph -> ( F ` C ) e. ( ( ( int ` T ) ` ( ( F " ( ( C - R ) [,] ( C + R ) ) ) u. ( RR \ Y ) ) ) i^i Y ) ) |
| 140 |
|
eqid |
|- ( T |`t Y ) = ( T |`t Y ) |
| 141 |
25 140
|
restntr |
|- ( ( T e. Top /\ Y C_ RR /\ ( F " ( ( C - R ) [,] ( C + R ) ) ) C_ Y ) -> ( ( int ` ( T |`t Y ) ) ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) = ( ( ( int ` T ) ` ( ( F " ( ( C - R ) [,] ( C + R ) ) ) u. ( RR \ Y ) ) ) i^i Y ) ) |
| 142 |
13 20 22 141
|
mp3an2i |
|- ( ph -> ( ( int ` ( T |`t Y ) ) ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) = ( ( ( int ` T ) ` ( ( F " ( ( C - R ) [,] ( C + R ) ) ) u. ( RR \ Y ) ) ) i^i Y ) ) |
| 143 |
|
restabs |
|- ( ( J e. Top /\ Y C_ RR /\ RR e. _V ) -> ( ( J |`t RR ) |`t Y ) = ( J |`t Y ) ) |
| 144 |
52 20 55 143
|
mp3an2i |
|- ( ph -> ( ( J |`t RR ) |`t Y ) = ( J |`t Y ) ) |
| 145 |
50
|
oveq1i |
|- ( T |`t Y ) = ( ( J |`t RR ) |`t Y ) |
| 146 |
144 145 11
|
3eqtr4g |
|- ( ph -> ( T |`t Y ) = N ) |
| 147 |
146
|
fveq2d |
|- ( ph -> ( int ` ( T |`t Y ) ) = ( int ` N ) ) |
| 148 |
147
|
fveq1d |
|- ( ph -> ( ( int ` ( T |`t Y ) ) ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) = ( ( int ` N ) ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
| 149 |
142 148
|
eqtr3d |
|- ( ph -> ( ( ( int ` T ) ` ( ( F " ( ( C - R ) [,] ( C + R ) ) ) u. ( RR \ Y ) ) ) i^i Y ) = ( ( int ` N ) ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
| 150 |
139 149
|
eleqtrd |
|- ( ph -> ( F ` C ) e. ( ( int ` N ) ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
| 151 |
126
|
feq2d |
|- ( ph -> ( `' F : Y --> X <-> `' F : U. N --> X ) ) |
| 152 |
35 151
|
mpbid |
|- ( ph -> `' F : U. N --> X ) |
| 153 |
|
resttopon |
|- ( ( J e. ( TopOn ` CC ) /\ X C_ CC ) -> ( J |`t X ) e. ( TopOn ` X ) ) |
| 154 |
100 42 153
|
sylancr |
|- ( ph -> ( J |`t X ) e. ( TopOn ` X ) ) |
| 155 |
10 154
|
eqeltrid |
|- ( ph -> M e. ( TopOn ` X ) ) |
| 156 |
|
toponuni |
|- ( M e. ( TopOn ` X ) -> X = U. M ) |
| 157 |
|
feq3 |
|- ( X = U. M -> ( `' F : U. N --> X <-> `' F : U. N --> U. M ) ) |
| 158 |
155 156 157
|
3syl |
|- ( ph -> ( `' F : U. N --> X <-> `' F : U. N --> U. M ) ) |
| 159 |
152 158
|
mpbid |
|- ( ph -> `' F : U. N --> U. M ) |
| 160 |
|
eqid |
|- U. N = U. N |
| 161 |
|
eqid |
|- U. M = U. M |
| 162 |
160 161
|
cnprest |
|- ( ( ( N e. Top /\ ( F " ( ( C - R ) [,] ( C + R ) ) ) C_ U. N ) /\ ( ( F ` C ) e. ( ( int ` N ) ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) /\ `' F : U. N --> U. M ) ) -> ( `' F e. ( ( N CnP M ) ` ( F ` C ) ) <-> ( `' F |` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) e. ( ( ( N |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) CnP M ) ` ( F ` C ) ) ) ) |
| 163 |
124 127 150 159 162
|
syl22anc |
|- ( ph -> ( `' F e. ( ( N CnP M ) ` ( F ` C ) ) <-> ( `' F |` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) e. ( ( ( N |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) CnP M ) ` ( F ` C ) ) ) ) |
| 164 |
118 163
|
mpbird |
|- ( ph -> `' F e. ( ( N CnP M ) ` ( F ` C ) ) ) |
| 165 |
32 164
|
jca |
|- ( ph -> ( ( F ` C ) e. ( ( int ` T ) ` Y ) /\ `' F e. ( ( N CnP M ) ` ( F ` C ) ) ) ) |