Step |
Hyp |
Ref |
Expression |
1 |
|
dvco.f |
|- ( ph -> F : X --> CC ) |
2 |
|
dvco.x |
|- ( ph -> X C_ S ) |
3 |
|
dvco.g |
|- ( ph -> G : Y --> X ) |
4 |
|
dvco.y |
|- ( ph -> Y C_ T ) |
5 |
|
dvco.s |
|- ( ph -> S e. { RR , CC } ) |
6 |
|
dvco.t |
|- ( ph -> T e. { RR , CC } ) |
7 |
|
dvco.df |
|- ( ph -> ( G ` C ) e. dom ( S _D F ) ) |
8 |
|
dvco.dg |
|- ( ph -> C e. dom ( T _D G ) ) |
9 |
|
dvfg |
|- ( T e. { RR , CC } -> ( T _D ( F o. G ) ) : dom ( T _D ( F o. G ) ) --> CC ) |
10 |
|
ffun |
|- ( ( T _D ( F o. G ) ) : dom ( T _D ( F o. G ) ) --> CC -> Fun ( T _D ( F o. G ) ) ) |
11 |
6 9 10
|
3syl |
|- ( ph -> Fun ( T _D ( F o. G ) ) ) |
12 |
|
recnprss |
|- ( S e. { RR , CC } -> S C_ CC ) |
13 |
5 12
|
syl |
|- ( ph -> S C_ CC ) |
14 |
|
recnprss |
|- ( T e. { RR , CC } -> T C_ CC ) |
15 |
6 14
|
syl |
|- ( ph -> T C_ CC ) |
16 |
|
fvexd |
|- ( ph -> ( ( S _D F ) ` ( G ` C ) ) e. _V ) |
17 |
|
fvexd |
|- ( ph -> ( ( T _D G ) ` C ) e. _V ) |
18 |
|
dvfg |
|- ( S e. { RR , CC } -> ( S _D F ) : dom ( S _D F ) --> CC ) |
19 |
|
ffun |
|- ( ( S _D F ) : dom ( S _D F ) --> CC -> Fun ( S _D F ) ) |
20 |
|
funfvbrb |
|- ( Fun ( S _D F ) -> ( ( G ` C ) e. dom ( S _D F ) <-> ( G ` C ) ( S _D F ) ( ( S _D F ) ` ( G ` C ) ) ) ) |
21 |
5 18 19 20
|
4syl |
|- ( ph -> ( ( G ` C ) e. dom ( S _D F ) <-> ( G ` C ) ( S _D F ) ( ( S _D F ) ` ( G ` C ) ) ) ) |
22 |
7 21
|
mpbid |
|- ( ph -> ( G ` C ) ( S _D F ) ( ( S _D F ) ` ( G ` C ) ) ) |
23 |
|
dvfg |
|- ( T e. { RR , CC } -> ( T _D G ) : dom ( T _D G ) --> CC ) |
24 |
|
ffun |
|- ( ( T _D G ) : dom ( T _D G ) --> CC -> Fun ( T _D G ) ) |
25 |
|
funfvbrb |
|- ( Fun ( T _D G ) -> ( C e. dom ( T _D G ) <-> C ( T _D G ) ( ( T _D G ) ` C ) ) ) |
26 |
6 23 24 25
|
4syl |
|- ( ph -> ( C e. dom ( T _D G ) <-> C ( T _D G ) ( ( T _D G ) ` C ) ) ) |
27 |
8 26
|
mpbid |
|- ( ph -> C ( T _D G ) ( ( T _D G ) ` C ) ) |
28 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
29 |
1 2 3 4 13 15 16 17 22 27 28
|
dvcobr |
|- ( ph -> C ( T _D ( F o. G ) ) ( ( ( S _D F ) ` ( G ` C ) ) x. ( ( T _D G ) ` C ) ) ) |
30 |
|
funbrfv |
|- ( Fun ( T _D ( F o. G ) ) -> ( C ( T _D ( F o. G ) ) ( ( ( S _D F ) ` ( G ` C ) ) x. ( ( T _D G ) ` C ) ) -> ( ( T _D ( F o. G ) ) ` C ) = ( ( ( S _D F ) ` ( G ` C ) ) x. ( ( T _D G ) ` C ) ) ) ) |
31 |
11 29 30
|
sylc |
|- ( ph -> ( ( T _D ( F o. G ) ) ` C ) = ( ( ( S _D F ) ` ( G ` C ) ) x. ( ( T _D G ) ` C ) ) ) |