Step |
Hyp |
Ref |
Expression |
1 |
|
dvcof.s |
|- ( ph -> S e. { RR , CC } ) |
2 |
|
dvcof.t |
|- ( ph -> T e. { RR , CC } ) |
3 |
|
dvcof.f |
|- ( ph -> F : X --> CC ) |
4 |
|
dvcof.g |
|- ( ph -> G : Y --> X ) |
5 |
|
dvcof.df |
|- ( ph -> dom ( S _D F ) = X ) |
6 |
|
dvcof.dg |
|- ( ph -> dom ( T _D G ) = Y ) |
7 |
3
|
adantr |
|- ( ( ph /\ x e. Y ) -> F : X --> CC ) |
8 |
|
dvbsss |
|- dom ( S _D F ) C_ S |
9 |
5 8
|
eqsstrrdi |
|- ( ph -> X C_ S ) |
10 |
9
|
adantr |
|- ( ( ph /\ x e. Y ) -> X C_ S ) |
11 |
4
|
adantr |
|- ( ( ph /\ x e. Y ) -> G : Y --> X ) |
12 |
|
dvbsss |
|- dom ( T _D G ) C_ T |
13 |
6 12
|
eqsstrrdi |
|- ( ph -> Y C_ T ) |
14 |
13
|
adantr |
|- ( ( ph /\ x e. Y ) -> Y C_ T ) |
15 |
1
|
adantr |
|- ( ( ph /\ x e. Y ) -> S e. { RR , CC } ) |
16 |
2
|
adantr |
|- ( ( ph /\ x e. Y ) -> T e. { RR , CC } ) |
17 |
4
|
ffvelrnda |
|- ( ( ph /\ x e. Y ) -> ( G ` x ) e. X ) |
18 |
5
|
adantr |
|- ( ( ph /\ x e. Y ) -> dom ( S _D F ) = X ) |
19 |
17 18
|
eleqtrrd |
|- ( ( ph /\ x e. Y ) -> ( G ` x ) e. dom ( S _D F ) ) |
20 |
6
|
eleq2d |
|- ( ph -> ( x e. dom ( T _D G ) <-> x e. Y ) ) |
21 |
20
|
biimpar |
|- ( ( ph /\ x e. Y ) -> x e. dom ( T _D G ) ) |
22 |
7 10 11 14 15 16 19 21
|
dvco |
|- ( ( ph /\ x e. Y ) -> ( ( T _D ( F o. G ) ) ` x ) = ( ( ( S _D F ) ` ( G ` x ) ) x. ( ( T _D G ) ` x ) ) ) |
23 |
22
|
mpteq2dva |
|- ( ph -> ( x e. Y |-> ( ( T _D ( F o. G ) ) ` x ) ) = ( x e. Y |-> ( ( ( S _D F ) ` ( G ` x ) ) x. ( ( T _D G ) ` x ) ) ) ) |
24 |
|
dvfg |
|- ( T e. { RR , CC } -> ( T _D ( F o. G ) ) : dom ( T _D ( F o. G ) ) --> CC ) |
25 |
2 24
|
syl |
|- ( ph -> ( T _D ( F o. G ) ) : dom ( T _D ( F o. G ) ) --> CC ) |
26 |
|
recnprss |
|- ( T e. { RR , CC } -> T C_ CC ) |
27 |
2 26
|
syl |
|- ( ph -> T C_ CC ) |
28 |
|
fco |
|- ( ( F : X --> CC /\ G : Y --> X ) -> ( F o. G ) : Y --> CC ) |
29 |
3 4 28
|
syl2anc |
|- ( ph -> ( F o. G ) : Y --> CC ) |
30 |
27 29 13
|
dvbss |
|- ( ph -> dom ( T _D ( F o. G ) ) C_ Y ) |
31 |
|
recnprss |
|- ( S e. { RR , CC } -> S C_ CC ) |
32 |
15 31
|
syl |
|- ( ( ph /\ x e. Y ) -> S C_ CC ) |
33 |
16 26
|
syl |
|- ( ( ph /\ x e. Y ) -> T C_ CC ) |
34 |
|
fvexd |
|- ( ( ph /\ x e. Y ) -> ( ( S _D F ) ` ( G ` x ) ) e. _V ) |
35 |
|
fvexd |
|- ( ( ph /\ x e. Y ) -> ( ( T _D G ) ` x ) e. _V ) |
36 |
|
dvfg |
|- ( S e. { RR , CC } -> ( S _D F ) : dom ( S _D F ) --> CC ) |
37 |
|
ffun |
|- ( ( S _D F ) : dom ( S _D F ) --> CC -> Fun ( S _D F ) ) |
38 |
|
funfvbrb |
|- ( Fun ( S _D F ) -> ( ( G ` x ) e. dom ( S _D F ) <-> ( G ` x ) ( S _D F ) ( ( S _D F ) ` ( G ` x ) ) ) ) |
39 |
15 36 37 38
|
4syl |
|- ( ( ph /\ x e. Y ) -> ( ( G ` x ) e. dom ( S _D F ) <-> ( G ` x ) ( S _D F ) ( ( S _D F ) ` ( G ` x ) ) ) ) |
40 |
19 39
|
mpbid |
|- ( ( ph /\ x e. Y ) -> ( G ` x ) ( S _D F ) ( ( S _D F ) ` ( G ` x ) ) ) |
41 |
|
dvfg |
|- ( T e. { RR , CC } -> ( T _D G ) : dom ( T _D G ) --> CC ) |
42 |
|
ffun |
|- ( ( T _D G ) : dom ( T _D G ) --> CC -> Fun ( T _D G ) ) |
43 |
|
funfvbrb |
|- ( Fun ( T _D G ) -> ( x e. dom ( T _D G ) <-> x ( T _D G ) ( ( T _D G ) ` x ) ) ) |
44 |
16 41 42 43
|
4syl |
|- ( ( ph /\ x e. Y ) -> ( x e. dom ( T _D G ) <-> x ( T _D G ) ( ( T _D G ) ` x ) ) ) |
45 |
21 44
|
mpbid |
|- ( ( ph /\ x e. Y ) -> x ( T _D G ) ( ( T _D G ) ` x ) ) |
46 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
47 |
7 10 11 14 32 33 34 35 40 45 46
|
dvcobr |
|- ( ( ph /\ x e. Y ) -> x ( T _D ( F o. G ) ) ( ( ( S _D F ) ` ( G ` x ) ) x. ( ( T _D G ) ` x ) ) ) |
48 |
|
reldv |
|- Rel ( T _D ( F o. G ) ) |
49 |
48
|
releldmi |
|- ( x ( T _D ( F o. G ) ) ( ( ( S _D F ) ` ( G ` x ) ) x. ( ( T _D G ) ` x ) ) -> x e. dom ( T _D ( F o. G ) ) ) |
50 |
47 49
|
syl |
|- ( ( ph /\ x e. Y ) -> x e. dom ( T _D ( F o. G ) ) ) |
51 |
30 50
|
eqelssd |
|- ( ph -> dom ( T _D ( F o. G ) ) = Y ) |
52 |
51
|
feq2d |
|- ( ph -> ( ( T _D ( F o. G ) ) : dom ( T _D ( F o. G ) ) --> CC <-> ( T _D ( F o. G ) ) : Y --> CC ) ) |
53 |
25 52
|
mpbid |
|- ( ph -> ( T _D ( F o. G ) ) : Y --> CC ) |
54 |
53
|
feqmptd |
|- ( ph -> ( T _D ( F o. G ) ) = ( x e. Y |-> ( ( T _D ( F o. G ) ) ` x ) ) ) |
55 |
2 13
|
ssexd |
|- ( ph -> Y e. _V ) |
56 |
4
|
feqmptd |
|- ( ph -> G = ( x e. Y |-> ( G ` x ) ) ) |
57 |
1 36
|
syl |
|- ( ph -> ( S _D F ) : dom ( S _D F ) --> CC ) |
58 |
5
|
feq2d |
|- ( ph -> ( ( S _D F ) : dom ( S _D F ) --> CC <-> ( S _D F ) : X --> CC ) ) |
59 |
57 58
|
mpbid |
|- ( ph -> ( S _D F ) : X --> CC ) |
60 |
59
|
feqmptd |
|- ( ph -> ( S _D F ) = ( y e. X |-> ( ( S _D F ) ` y ) ) ) |
61 |
|
fveq2 |
|- ( y = ( G ` x ) -> ( ( S _D F ) ` y ) = ( ( S _D F ) ` ( G ` x ) ) ) |
62 |
17 56 60 61
|
fmptco |
|- ( ph -> ( ( S _D F ) o. G ) = ( x e. Y |-> ( ( S _D F ) ` ( G ` x ) ) ) ) |
63 |
2 41
|
syl |
|- ( ph -> ( T _D G ) : dom ( T _D G ) --> CC ) |
64 |
6
|
feq2d |
|- ( ph -> ( ( T _D G ) : dom ( T _D G ) --> CC <-> ( T _D G ) : Y --> CC ) ) |
65 |
63 64
|
mpbid |
|- ( ph -> ( T _D G ) : Y --> CC ) |
66 |
65
|
feqmptd |
|- ( ph -> ( T _D G ) = ( x e. Y |-> ( ( T _D G ) ` x ) ) ) |
67 |
55 34 35 62 66
|
offval2 |
|- ( ph -> ( ( ( S _D F ) o. G ) oF x. ( T _D G ) ) = ( x e. Y |-> ( ( ( S _D F ) ` ( G ` x ) ) x. ( ( T _D G ) ` x ) ) ) ) |
68 |
23 54 67
|
3eqtr4d |
|- ( ph -> ( T _D ( F o. G ) ) = ( ( ( S _D F ) o. G ) oF x. ( T _D G ) ) ) |