Step |
Hyp |
Ref |
Expression |
1 |
|
fconst6g |
|- ( A e. CC -> ( CC X. { A } ) : CC --> CC ) |
2 |
|
simpr2 |
|- ( ( A e. CC /\ ( x e. CC /\ z e. CC /\ z =/= x ) ) -> z e. CC ) |
3 |
|
fvconst2g |
|- ( ( A e. CC /\ z e. CC ) -> ( ( CC X. { A } ) ` z ) = A ) |
4 |
2 3
|
syldan |
|- ( ( A e. CC /\ ( x e. CC /\ z e. CC /\ z =/= x ) ) -> ( ( CC X. { A } ) ` z ) = A ) |
5 |
|
fvconst2g |
|- ( ( A e. CC /\ x e. CC ) -> ( ( CC X. { A } ) ` x ) = A ) |
6 |
5
|
3ad2antr1 |
|- ( ( A e. CC /\ ( x e. CC /\ z e. CC /\ z =/= x ) ) -> ( ( CC X. { A } ) ` x ) = A ) |
7 |
4 6
|
oveq12d |
|- ( ( A e. CC /\ ( x e. CC /\ z e. CC /\ z =/= x ) ) -> ( ( ( CC X. { A } ) ` z ) - ( ( CC X. { A } ) ` x ) ) = ( A - A ) ) |
8 |
|
subid |
|- ( A e. CC -> ( A - A ) = 0 ) |
9 |
8
|
adantr |
|- ( ( A e. CC /\ ( x e. CC /\ z e. CC /\ z =/= x ) ) -> ( A - A ) = 0 ) |
10 |
7 9
|
eqtrd |
|- ( ( A e. CC /\ ( x e. CC /\ z e. CC /\ z =/= x ) ) -> ( ( ( CC X. { A } ) ` z ) - ( ( CC X. { A } ) ` x ) ) = 0 ) |
11 |
10
|
oveq1d |
|- ( ( A e. CC /\ ( x e. CC /\ z e. CC /\ z =/= x ) ) -> ( ( ( ( CC X. { A } ) ` z ) - ( ( CC X. { A } ) ` x ) ) / ( z - x ) ) = ( 0 / ( z - x ) ) ) |
12 |
|
simpr1 |
|- ( ( A e. CC /\ ( x e. CC /\ z e. CC /\ z =/= x ) ) -> x e. CC ) |
13 |
2 12
|
subcld |
|- ( ( A e. CC /\ ( x e. CC /\ z e. CC /\ z =/= x ) ) -> ( z - x ) e. CC ) |
14 |
|
simpr3 |
|- ( ( A e. CC /\ ( x e. CC /\ z e. CC /\ z =/= x ) ) -> z =/= x ) |
15 |
2 12 14
|
subne0d |
|- ( ( A e. CC /\ ( x e. CC /\ z e. CC /\ z =/= x ) ) -> ( z - x ) =/= 0 ) |
16 |
13 15
|
div0d |
|- ( ( A e. CC /\ ( x e. CC /\ z e. CC /\ z =/= x ) ) -> ( 0 / ( z - x ) ) = 0 ) |
17 |
11 16
|
eqtrd |
|- ( ( A e. CC /\ ( x e. CC /\ z e. CC /\ z =/= x ) ) -> ( ( ( ( CC X. { A } ) ` z ) - ( ( CC X. { A } ) ` x ) ) / ( z - x ) ) = 0 ) |
18 |
|
0cn |
|- 0 e. CC |
19 |
1 17 18
|
dvidlem |
|- ( A e. CC -> ( CC _D ( CC X. { A } ) ) = ( CC X. { 0 } ) ) |