| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulcl |
|- ( ( A e. CC /\ x e. CC ) -> ( A x. x ) e. CC ) |
| 2 |
|
eqidd |
|- ( A e. CC -> ( x e. CC |-> ( A x. x ) ) = ( x e. CC |-> ( A x. x ) ) ) |
| 3 |
|
cosf |
|- cos : CC --> CC |
| 4 |
3
|
a1i |
|- ( A e. CC -> cos : CC --> CC ) |
| 5 |
4
|
feqmptd |
|- ( A e. CC -> cos = ( y e. CC |-> ( cos ` y ) ) ) |
| 6 |
|
fveq2 |
|- ( y = ( A x. x ) -> ( cos ` y ) = ( cos ` ( A x. x ) ) ) |
| 7 |
1 2 5 6
|
fmptco |
|- ( A e. CC -> ( cos o. ( x e. CC |-> ( A x. x ) ) ) = ( x e. CC |-> ( cos ` ( A x. x ) ) ) ) |
| 8 |
7
|
eqcomd |
|- ( A e. CC -> ( x e. CC |-> ( cos ` ( A x. x ) ) ) = ( cos o. ( x e. CC |-> ( A x. x ) ) ) ) |
| 9 |
8
|
oveq2d |
|- ( A e. CC -> ( CC _D ( x e. CC |-> ( cos ` ( A x. x ) ) ) ) = ( CC _D ( cos o. ( x e. CC |-> ( A x. x ) ) ) ) ) |
| 10 |
|
cnelprrecn |
|- CC e. { RR , CC } |
| 11 |
10
|
a1i |
|- ( A e. CC -> CC e. { RR , CC } ) |
| 12 |
1
|
fmpttd |
|- ( A e. CC -> ( x e. CC |-> ( A x. x ) ) : CC --> CC ) |
| 13 |
|
dvcos |
|- ( CC _D cos ) = ( x e. CC |-> -u ( sin ` x ) ) |
| 14 |
13
|
dmeqi |
|- dom ( CC _D cos ) = dom ( x e. CC |-> -u ( sin ` x ) ) |
| 15 |
|
dmmptg |
|- ( A. x e. CC -u ( sin ` x ) e. CC -> dom ( x e. CC |-> -u ( sin ` x ) ) = CC ) |
| 16 |
|
sincl |
|- ( x e. CC -> ( sin ` x ) e. CC ) |
| 17 |
16
|
negcld |
|- ( x e. CC -> -u ( sin ` x ) e. CC ) |
| 18 |
15 17
|
mprg |
|- dom ( x e. CC |-> -u ( sin ` x ) ) = CC |
| 19 |
14 18
|
eqtri |
|- dom ( CC _D cos ) = CC |
| 20 |
19
|
a1i |
|- ( A e. CC -> dom ( CC _D cos ) = CC ) |
| 21 |
|
simpl |
|- ( ( A e. CC /\ x e. CC ) -> A e. CC ) |
| 22 |
|
0red |
|- ( ( A e. CC /\ x e. CC ) -> 0 e. RR ) |
| 23 |
|
id |
|- ( A e. CC -> A e. CC ) |
| 24 |
11 23
|
dvmptc |
|- ( A e. CC -> ( CC _D ( x e. CC |-> A ) ) = ( x e. CC |-> 0 ) ) |
| 25 |
|
simpr |
|- ( ( A e. CC /\ x e. CC ) -> x e. CC ) |
| 26 |
|
1red |
|- ( ( A e. CC /\ x e. CC ) -> 1 e. RR ) |
| 27 |
11
|
dvmptid |
|- ( A e. CC -> ( CC _D ( x e. CC |-> x ) ) = ( x e. CC |-> 1 ) ) |
| 28 |
11 21 22 24 25 26 27
|
dvmptmul |
|- ( A e. CC -> ( CC _D ( x e. CC |-> ( A x. x ) ) ) = ( x e. CC |-> ( ( 0 x. x ) + ( 1 x. A ) ) ) ) |
| 29 |
28
|
dmeqd |
|- ( A e. CC -> dom ( CC _D ( x e. CC |-> ( A x. x ) ) ) = dom ( x e. CC |-> ( ( 0 x. x ) + ( 1 x. A ) ) ) ) |
| 30 |
|
dmmptg |
|- ( A. x e. CC ( ( 0 x. x ) + ( 1 x. A ) ) e. _V -> dom ( x e. CC |-> ( ( 0 x. x ) + ( 1 x. A ) ) ) = CC ) |
| 31 |
|
ovex |
|- ( ( 0 x. x ) + ( 1 x. A ) ) e. _V |
| 32 |
31
|
a1i |
|- ( x e. CC -> ( ( 0 x. x ) + ( 1 x. A ) ) e. _V ) |
| 33 |
30 32
|
mprg |
|- dom ( x e. CC |-> ( ( 0 x. x ) + ( 1 x. A ) ) ) = CC |
| 34 |
29 33
|
eqtrdi |
|- ( A e. CC -> dom ( CC _D ( x e. CC |-> ( A x. x ) ) ) = CC ) |
| 35 |
11 11 4 12 20 34
|
dvcof |
|- ( A e. CC -> ( CC _D ( cos o. ( x e. CC |-> ( A x. x ) ) ) ) = ( ( ( CC _D cos ) o. ( x e. CC |-> ( A x. x ) ) ) oF x. ( CC _D ( x e. CC |-> ( A x. x ) ) ) ) ) |
| 36 |
|
dvcos |
|- ( CC _D cos ) = ( y e. CC |-> -u ( sin ` y ) ) |
| 37 |
36
|
a1i |
|- ( A e. CC -> ( CC _D cos ) = ( y e. CC |-> -u ( sin ` y ) ) ) |
| 38 |
|
fveq2 |
|- ( y = ( A x. x ) -> ( sin ` y ) = ( sin ` ( A x. x ) ) ) |
| 39 |
38
|
negeqd |
|- ( y = ( A x. x ) -> -u ( sin ` y ) = -u ( sin ` ( A x. x ) ) ) |
| 40 |
1 2 37 39
|
fmptco |
|- ( A e. CC -> ( ( CC _D cos ) o. ( x e. CC |-> ( A x. x ) ) ) = ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) ) |
| 41 |
40
|
oveq1d |
|- ( A e. CC -> ( ( ( CC _D cos ) o. ( x e. CC |-> ( A x. x ) ) ) oF x. ( CC _D ( x e. CC |-> ( A x. x ) ) ) ) = ( ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) oF x. ( CC _D ( x e. CC |-> ( A x. x ) ) ) ) ) |
| 42 |
|
cnex |
|- CC e. _V |
| 43 |
42
|
mptex |
|- ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) e. _V |
| 44 |
|
ovex |
|- ( CC _D ( x e. CC |-> ( A x. x ) ) ) e. _V |
| 45 |
|
offval3 |
|- ( ( ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) e. _V /\ ( CC _D ( x e. CC |-> ( A x. x ) ) ) e. _V ) -> ( ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) oF x. ( CC _D ( x e. CC |-> ( A x. x ) ) ) ) = ( y e. ( dom ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) i^i dom ( CC _D ( x e. CC |-> ( A x. x ) ) ) ) |-> ( ( ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) ` y ) x. ( ( CC _D ( x e. CC |-> ( A x. x ) ) ) ` y ) ) ) ) |
| 46 |
43 44 45
|
mp2an |
|- ( ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) oF x. ( CC _D ( x e. CC |-> ( A x. x ) ) ) ) = ( y e. ( dom ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) i^i dom ( CC _D ( x e. CC |-> ( A x. x ) ) ) ) |-> ( ( ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) ` y ) x. ( ( CC _D ( x e. CC |-> ( A x. x ) ) ) ` y ) ) ) |
| 47 |
46
|
a1i |
|- ( A e. CC -> ( ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) oF x. ( CC _D ( x e. CC |-> ( A x. x ) ) ) ) = ( y e. ( dom ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) i^i dom ( CC _D ( x e. CC |-> ( A x. x ) ) ) ) |-> ( ( ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) ` y ) x. ( ( CC _D ( x e. CC |-> ( A x. x ) ) ) ` y ) ) ) ) |
| 48 |
1
|
sincld |
|- ( ( A e. CC /\ x e. CC ) -> ( sin ` ( A x. x ) ) e. CC ) |
| 49 |
48
|
negcld |
|- ( ( A e. CC /\ x e. CC ) -> -u ( sin ` ( A x. x ) ) e. CC ) |
| 50 |
49
|
ralrimiva |
|- ( A e. CC -> A. x e. CC -u ( sin ` ( A x. x ) ) e. CC ) |
| 51 |
|
dmmptg |
|- ( A. x e. CC -u ( sin ` ( A x. x ) ) e. CC -> dom ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) = CC ) |
| 52 |
50 51
|
syl |
|- ( A e. CC -> dom ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) = CC ) |
| 53 |
52 34
|
ineq12d |
|- ( A e. CC -> ( dom ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) i^i dom ( CC _D ( x e. CC |-> ( A x. x ) ) ) ) = ( CC i^i CC ) ) |
| 54 |
|
inidm |
|- ( CC i^i CC ) = CC |
| 55 |
53 54
|
eqtrdi |
|- ( A e. CC -> ( dom ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) i^i dom ( CC _D ( x e. CC |-> ( A x. x ) ) ) ) = CC ) |
| 56 |
|
simpr |
|- ( ( A e. CC /\ y e. ( dom ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) i^i dom ( CC _D ( x e. CC |-> ( A x. x ) ) ) ) ) -> y e. ( dom ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) i^i dom ( CC _D ( x e. CC |-> ( A x. x ) ) ) ) ) |
| 57 |
55
|
adantr |
|- ( ( A e. CC /\ y e. ( dom ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) i^i dom ( CC _D ( x e. CC |-> ( A x. x ) ) ) ) ) -> ( dom ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) i^i dom ( CC _D ( x e. CC |-> ( A x. x ) ) ) ) = CC ) |
| 58 |
56 57
|
eleqtrd |
|- ( ( A e. CC /\ y e. ( dom ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) i^i dom ( CC _D ( x e. CC |-> ( A x. x ) ) ) ) ) -> y e. CC ) |
| 59 |
|
eqidd |
|- ( y e. CC -> ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) = ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) ) |
| 60 |
|
oveq2 |
|- ( x = y -> ( A x. x ) = ( A x. y ) ) |
| 61 |
60
|
fveq2d |
|- ( x = y -> ( sin ` ( A x. x ) ) = ( sin ` ( A x. y ) ) ) |
| 62 |
61
|
negeqd |
|- ( x = y -> -u ( sin ` ( A x. x ) ) = -u ( sin ` ( A x. y ) ) ) |
| 63 |
62
|
adantl |
|- ( ( y e. CC /\ x = y ) -> -u ( sin ` ( A x. x ) ) = -u ( sin ` ( A x. y ) ) ) |
| 64 |
|
id |
|- ( y e. CC -> y e. CC ) |
| 65 |
|
negex |
|- -u ( sin ` ( A x. y ) ) e. _V |
| 66 |
65
|
a1i |
|- ( y e. CC -> -u ( sin ` ( A x. y ) ) e. _V ) |
| 67 |
59 63 64 66
|
fvmptd |
|- ( y e. CC -> ( ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) ` y ) = -u ( sin ` ( A x. y ) ) ) |
| 68 |
67
|
adantl |
|- ( ( A e. CC /\ y e. CC ) -> ( ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) ` y ) = -u ( sin ` ( A x. y ) ) ) |
| 69 |
28
|
adantr |
|- ( ( A e. CC /\ y e. CC ) -> ( CC _D ( x e. CC |-> ( A x. x ) ) ) = ( x e. CC |-> ( ( 0 x. x ) + ( 1 x. A ) ) ) ) |
| 70 |
|
oveq2 |
|- ( x = y -> ( 0 x. x ) = ( 0 x. y ) ) |
| 71 |
70
|
oveq1d |
|- ( x = y -> ( ( 0 x. x ) + ( 1 x. A ) ) = ( ( 0 x. y ) + ( 1 x. A ) ) ) |
| 72 |
|
mul02 |
|- ( y e. CC -> ( 0 x. y ) = 0 ) |
| 73 |
|
mullid |
|- ( A e. CC -> ( 1 x. A ) = A ) |
| 74 |
72 73
|
oveqan12rd |
|- ( ( A e. CC /\ y e. CC ) -> ( ( 0 x. y ) + ( 1 x. A ) ) = ( 0 + A ) ) |
| 75 |
|
addlid |
|- ( A e. CC -> ( 0 + A ) = A ) |
| 76 |
75
|
adantr |
|- ( ( A e. CC /\ y e. CC ) -> ( 0 + A ) = A ) |
| 77 |
74 76
|
eqtrd |
|- ( ( A e. CC /\ y e. CC ) -> ( ( 0 x. y ) + ( 1 x. A ) ) = A ) |
| 78 |
71 77
|
sylan9eqr |
|- ( ( ( A e. CC /\ y e. CC ) /\ x = y ) -> ( ( 0 x. x ) + ( 1 x. A ) ) = A ) |
| 79 |
|
simpr |
|- ( ( A e. CC /\ y e. CC ) -> y e. CC ) |
| 80 |
|
simpl |
|- ( ( A e. CC /\ y e. CC ) -> A e. CC ) |
| 81 |
69 78 79 80
|
fvmptd |
|- ( ( A e. CC /\ y e. CC ) -> ( ( CC _D ( x e. CC |-> ( A x. x ) ) ) ` y ) = A ) |
| 82 |
68 81
|
oveq12d |
|- ( ( A e. CC /\ y e. CC ) -> ( ( ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) ` y ) x. ( ( CC _D ( x e. CC |-> ( A x. x ) ) ) ` y ) ) = ( -u ( sin ` ( A x. y ) ) x. A ) ) |
| 83 |
|
mulcl |
|- ( ( A e. CC /\ y e. CC ) -> ( A x. y ) e. CC ) |
| 84 |
83
|
sincld |
|- ( ( A e. CC /\ y e. CC ) -> ( sin ` ( A x. y ) ) e. CC ) |
| 85 |
84
|
negcld |
|- ( ( A e. CC /\ y e. CC ) -> -u ( sin ` ( A x. y ) ) e. CC ) |
| 86 |
85 80
|
mulcomd |
|- ( ( A e. CC /\ y e. CC ) -> ( -u ( sin ` ( A x. y ) ) x. A ) = ( A x. -u ( sin ` ( A x. y ) ) ) ) |
| 87 |
82 86
|
eqtrd |
|- ( ( A e. CC /\ y e. CC ) -> ( ( ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) ` y ) x. ( ( CC _D ( x e. CC |-> ( A x. x ) ) ) ` y ) ) = ( A x. -u ( sin ` ( A x. y ) ) ) ) |
| 88 |
58 87
|
syldan |
|- ( ( A e. CC /\ y e. ( dom ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) i^i dom ( CC _D ( x e. CC |-> ( A x. x ) ) ) ) ) -> ( ( ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) ` y ) x. ( ( CC _D ( x e. CC |-> ( A x. x ) ) ) ` y ) ) = ( A x. -u ( sin ` ( A x. y ) ) ) ) |
| 89 |
55 88
|
mpteq12dva |
|- ( A e. CC -> ( y e. ( dom ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) i^i dom ( CC _D ( x e. CC |-> ( A x. x ) ) ) ) |-> ( ( ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) ` y ) x. ( ( CC _D ( x e. CC |-> ( A x. x ) ) ) ` y ) ) ) = ( y e. CC |-> ( A x. -u ( sin ` ( A x. y ) ) ) ) ) |
| 90 |
41 47 89
|
3eqtrd |
|- ( A e. CC -> ( ( ( CC _D cos ) o. ( x e. CC |-> ( A x. x ) ) ) oF x. ( CC _D ( x e. CC |-> ( A x. x ) ) ) ) = ( y e. CC |-> ( A x. -u ( sin ` ( A x. y ) ) ) ) ) |
| 91 |
9 35 90
|
3eqtrd |
|- ( A e. CC -> ( CC _D ( x e. CC |-> ( cos ` ( A x. x ) ) ) ) = ( y e. CC |-> ( A x. -u ( sin ` ( A x. y ) ) ) ) ) |
| 92 |
|
oveq2 |
|- ( y = x -> ( A x. y ) = ( A x. x ) ) |
| 93 |
92
|
fveq2d |
|- ( y = x -> ( sin ` ( A x. y ) ) = ( sin ` ( A x. x ) ) ) |
| 94 |
93
|
negeqd |
|- ( y = x -> -u ( sin ` ( A x. y ) ) = -u ( sin ` ( A x. x ) ) ) |
| 95 |
94
|
oveq2d |
|- ( y = x -> ( A x. -u ( sin ` ( A x. y ) ) ) = ( A x. -u ( sin ` ( A x. x ) ) ) ) |
| 96 |
95
|
cbvmptv |
|- ( y e. CC |-> ( A x. -u ( sin ` ( A x. y ) ) ) ) = ( x e. CC |-> ( A x. -u ( sin ` ( A x. x ) ) ) ) |
| 97 |
91 96
|
eqtrdi |
|- ( A e. CC -> ( CC _D ( x e. CC |-> ( cos ` ( A x. x ) ) ) ) = ( x e. CC |-> ( A x. -u ( sin ` ( A x. x ) ) ) ) ) |