| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							reelprrecn | 
							 |-  RR e. { RR , CC } | 
						
						
							| 2 | 
							
								
							 | 
							cosf | 
							 |-  cos : CC --> CC  | 
						
						
							| 3 | 
							
								
							 | 
							ssid | 
							 |-  CC C_ CC  | 
						
						
							| 4 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ x RR  | 
						
						
							| 5 | 
							
								
							 | 
							nfrab1 | 
							 |-  F/_ x { x e. CC | -u ( sin ` x ) e. _V } | 
						
						
							| 6 | 
							
								4 5
							 | 
							dfssf | 
							 |-  ( RR C_ { x e. CC | -u ( sin ` x ) e. _V } <-> A. x ( x e. RR -> x e. { x e. CC | -u ( sin ` x ) e. _V } ) ) | 
						
						
							| 7 | 
							
								
							 | 
							recn | 
							 |-  ( x e. RR -> x e. CC )  | 
						
						
							| 8 | 
							
								7
							 | 
							sincld | 
							 |-  ( x e. RR -> ( sin ` x ) e. CC )  | 
						
						
							| 9 | 
							
								8
							 | 
							negcld | 
							 |-  ( x e. RR -> -u ( sin ` x ) e. CC )  | 
						
						
							| 10 | 
							
								
							 | 
							elex | 
							 |-  ( -u ( sin ` x ) e. CC -> -u ( sin ` x ) e. _V )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							syl | 
							 |-  ( x e. RR -> -u ( sin ` x ) e. _V )  | 
						
						
							| 12 | 
							
								
							 | 
							rabid | 
							 |-  ( x e. { x e. CC | -u ( sin ` x ) e. _V } <-> ( x e. CC /\ -u ( sin ` x ) e. _V ) ) | 
						
						
							| 13 | 
							
								7 11 12
							 | 
							sylanbrc | 
							 |-  ( x e. RR -> x e. { x e. CC | -u ( sin ` x ) e. _V } ) | 
						
						
							| 14 | 
							
								6 13
							 | 
							mpgbir | 
							 |-  RR C_ { x e. CC | -u ( sin ` x ) e. _V } | 
						
						
							| 15 | 
							
								
							 | 
							dvcos | 
							 |-  ( CC _D cos ) = ( x e. CC |-> -u ( sin ` x ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							dmmpt | 
							 |-  dom ( CC _D cos ) = { x e. CC | -u ( sin ` x ) e. _V } | 
						
						
							| 17 | 
							
								14 16
							 | 
							sseqtrri | 
							 |-  RR C_ dom ( CC _D cos )  | 
						
						
							| 18 | 
							
								
							 | 
							dvres3 | 
							 |-  ( ( ( RR e. { RR , CC } /\ cos : CC --> CC ) /\ ( CC C_ CC /\ RR C_ dom ( CC _D cos ) ) ) -> ( RR _D ( cos |` RR ) ) = ( ( CC _D cos ) |` RR ) ) | 
						
						
							| 19 | 
							
								1 2 3 17 18
							 | 
							mp4an | 
							 |-  ( RR _D ( cos |` RR ) ) = ( ( CC _D cos ) |` RR )  | 
						
						
							| 20 | 
							
								
							 | 
							ffn | 
							 |-  ( cos : CC --> CC -> cos Fn CC )  | 
						
						
							| 21 | 
							
								2 20
							 | 
							ax-mp | 
							 |-  cos Fn CC  | 
						
						
							| 22 | 
							
								
							 | 
							dffn5 | 
							 |-  ( cos Fn CC <-> cos = ( x e. CC |-> ( cos ` x ) ) )  | 
						
						
							| 23 | 
							
								21 22
							 | 
							mpbi | 
							 |-  cos = ( x e. CC |-> ( cos ` x ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							reseq1i | 
							 |-  ( cos |` RR ) = ( ( x e. CC |-> ( cos ` x ) ) |` RR )  | 
						
						
							| 25 | 
							
								
							 | 
							ax-resscn | 
							 |-  RR C_ CC  | 
						
						
							| 26 | 
							
								
							 | 
							resmpt | 
							 |-  ( RR C_ CC -> ( ( x e. CC |-> ( cos ` x ) ) |` RR ) = ( x e. RR |-> ( cos ` x ) ) )  | 
						
						
							| 27 | 
							
								25 26
							 | 
							ax-mp | 
							 |-  ( ( x e. CC |-> ( cos ` x ) ) |` RR ) = ( x e. RR |-> ( cos ` x ) )  | 
						
						
							| 28 | 
							
								24 27
							 | 
							eqtri | 
							 |-  ( cos |` RR ) = ( x e. RR |-> ( cos ` x ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							oveq2i | 
							 |-  ( RR _D ( cos |` RR ) ) = ( RR _D ( x e. RR |-> ( cos ` x ) ) )  | 
						
						
							| 30 | 
							
								15
							 | 
							reseq1i | 
							 |-  ( ( CC _D cos ) |` RR ) = ( ( x e. CC |-> -u ( sin ` x ) ) |` RR )  | 
						
						
							| 31 | 
							
								
							 | 
							resmpt | 
							 |-  ( RR C_ CC -> ( ( x e. CC |-> -u ( sin ` x ) ) |` RR ) = ( x e. RR |-> -u ( sin ` x ) ) )  | 
						
						
							| 32 | 
							
								25 31
							 | 
							ax-mp | 
							 |-  ( ( x e. CC |-> -u ( sin ` x ) ) |` RR ) = ( x e. RR |-> -u ( sin ` x ) )  | 
						
						
							| 33 | 
							
								30 32
							 | 
							eqtri | 
							 |-  ( ( CC _D cos ) |` RR ) = ( x e. RR |-> -u ( sin ` x ) )  | 
						
						
							| 34 | 
							
								19 29 33
							 | 
							3eqtr3i | 
							 |-  ( RR _D ( x e. RR |-> ( cos ` x ) ) ) = ( x e. RR |-> -u ( sin ` x ) )  |