| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvcvx.a |
|- ( ph -> A e. RR ) |
| 2 |
|
dvcvx.b |
|- ( ph -> B e. RR ) |
| 3 |
|
dvcvx.l |
|- ( ph -> A < B ) |
| 4 |
|
dvcvx.f |
|- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
| 5 |
|
dvcvx.d |
|- ( ph -> ( RR _D F ) Isom < , < ( ( A (,) B ) , W ) ) |
| 6 |
|
dvcvx.t |
|- ( ph -> T e. ( 0 (,) 1 ) ) |
| 7 |
|
dvcvx.c |
|- C = ( ( T x. A ) + ( ( 1 - T ) x. B ) ) |
| 8 |
|
elioore |
|- ( T e. ( 0 (,) 1 ) -> T e. RR ) |
| 9 |
6 8
|
syl |
|- ( ph -> T e. RR ) |
| 10 |
9 1
|
remulcld |
|- ( ph -> ( T x. A ) e. RR ) |
| 11 |
|
1re |
|- 1 e. RR |
| 12 |
|
resubcl |
|- ( ( 1 e. RR /\ T e. RR ) -> ( 1 - T ) e. RR ) |
| 13 |
11 9 12
|
sylancr |
|- ( ph -> ( 1 - T ) e. RR ) |
| 14 |
13 2
|
remulcld |
|- ( ph -> ( ( 1 - T ) x. B ) e. RR ) |
| 15 |
10 14
|
readdcld |
|- ( ph -> ( ( T x. A ) + ( ( 1 - T ) x. B ) ) e. RR ) |
| 16 |
7 15
|
eqeltrid |
|- ( ph -> C e. RR ) |
| 17 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 18 |
9
|
recnd |
|- ( ph -> T e. CC ) |
| 19 |
1
|
recnd |
|- ( ph -> A e. CC ) |
| 20 |
17 18 19
|
subdird |
|- ( ph -> ( ( 1 - T ) x. A ) = ( ( 1 x. A ) - ( T x. A ) ) ) |
| 21 |
19
|
mullidd |
|- ( ph -> ( 1 x. A ) = A ) |
| 22 |
21
|
oveq1d |
|- ( ph -> ( ( 1 x. A ) - ( T x. A ) ) = ( A - ( T x. A ) ) ) |
| 23 |
20 22
|
eqtrd |
|- ( ph -> ( ( 1 - T ) x. A ) = ( A - ( T x. A ) ) ) |
| 24 |
|
eliooord |
|- ( T e. ( 0 (,) 1 ) -> ( 0 < T /\ T < 1 ) ) |
| 25 |
6 24
|
syl |
|- ( ph -> ( 0 < T /\ T < 1 ) ) |
| 26 |
25
|
simprd |
|- ( ph -> T < 1 ) |
| 27 |
|
posdif |
|- ( ( T e. RR /\ 1 e. RR ) -> ( T < 1 <-> 0 < ( 1 - T ) ) ) |
| 28 |
9 11 27
|
sylancl |
|- ( ph -> ( T < 1 <-> 0 < ( 1 - T ) ) ) |
| 29 |
26 28
|
mpbid |
|- ( ph -> 0 < ( 1 - T ) ) |
| 30 |
|
ltmul2 |
|- ( ( A e. RR /\ B e. RR /\ ( ( 1 - T ) e. RR /\ 0 < ( 1 - T ) ) ) -> ( A < B <-> ( ( 1 - T ) x. A ) < ( ( 1 - T ) x. B ) ) ) |
| 31 |
1 2 13 29 30
|
syl112anc |
|- ( ph -> ( A < B <-> ( ( 1 - T ) x. A ) < ( ( 1 - T ) x. B ) ) ) |
| 32 |
3 31
|
mpbid |
|- ( ph -> ( ( 1 - T ) x. A ) < ( ( 1 - T ) x. B ) ) |
| 33 |
23 32
|
eqbrtrrd |
|- ( ph -> ( A - ( T x. A ) ) < ( ( 1 - T ) x. B ) ) |
| 34 |
1 10 14
|
ltsubadd2d |
|- ( ph -> ( ( A - ( T x. A ) ) < ( ( 1 - T ) x. B ) <-> A < ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) ) |
| 35 |
33 34
|
mpbid |
|- ( ph -> A < ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) |
| 36 |
35 7
|
breqtrrdi |
|- ( ph -> A < C ) |
| 37 |
1
|
leidd |
|- ( ph -> A <_ A ) |
| 38 |
2
|
recnd |
|- ( ph -> B e. CC ) |
| 39 |
17 18 38
|
subdird |
|- ( ph -> ( ( 1 - T ) x. B ) = ( ( 1 x. B ) - ( T x. B ) ) ) |
| 40 |
38
|
mullidd |
|- ( ph -> ( 1 x. B ) = B ) |
| 41 |
40
|
oveq1d |
|- ( ph -> ( ( 1 x. B ) - ( T x. B ) ) = ( B - ( T x. B ) ) ) |
| 42 |
39 41
|
eqtrd |
|- ( ph -> ( ( 1 - T ) x. B ) = ( B - ( T x. B ) ) ) |
| 43 |
9 2
|
remulcld |
|- ( ph -> ( T x. B ) e. RR ) |
| 44 |
25
|
simpld |
|- ( ph -> 0 < T ) |
| 45 |
|
ltmul2 |
|- ( ( A e. RR /\ B e. RR /\ ( T e. RR /\ 0 < T ) ) -> ( A < B <-> ( T x. A ) < ( T x. B ) ) ) |
| 46 |
1 2 9 44 45
|
syl112anc |
|- ( ph -> ( A < B <-> ( T x. A ) < ( T x. B ) ) ) |
| 47 |
3 46
|
mpbid |
|- ( ph -> ( T x. A ) < ( T x. B ) ) |
| 48 |
10 43 2 47
|
ltsub2dd |
|- ( ph -> ( B - ( T x. B ) ) < ( B - ( T x. A ) ) ) |
| 49 |
42 48
|
eqbrtrd |
|- ( ph -> ( ( 1 - T ) x. B ) < ( B - ( T x. A ) ) ) |
| 50 |
10 14 2
|
ltaddsub2d |
|- ( ph -> ( ( ( T x. A ) + ( ( 1 - T ) x. B ) ) < B <-> ( ( 1 - T ) x. B ) < ( B - ( T x. A ) ) ) ) |
| 51 |
49 50
|
mpbird |
|- ( ph -> ( ( T x. A ) + ( ( 1 - T ) x. B ) ) < B ) |
| 52 |
7 51
|
eqbrtrid |
|- ( ph -> C < B ) |
| 53 |
16 2 52
|
ltled |
|- ( ph -> C <_ B ) |
| 54 |
|
iccss |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( A <_ A /\ C <_ B ) ) -> ( A [,] C ) C_ ( A [,] B ) ) |
| 55 |
1 2 37 53 54
|
syl22anc |
|- ( ph -> ( A [,] C ) C_ ( A [,] B ) ) |
| 56 |
|
rescncf |
|- ( ( A [,] C ) C_ ( A [,] B ) -> ( F e. ( ( A [,] B ) -cn-> RR ) -> ( F |` ( A [,] C ) ) e. ( ( A [,] C ) -cn-> RR ) ) ) |
| 57 |
55 4 56
|
sylc |
|- ( ph -> ( F |` ( A [,] C ) ) e. ( ( A [,] C ) -cn-> RR ) ) |
| 58 |
|
ax-resscn |
|- RR C_ CC |
| 59 |
58
|
a1i |
|- ( ph -> RR C_ CC ) |
| 60 |
|
cncff |
|- ( F e. ( ( A [,] B ) -cn-> RR ) -> F : ( A [,] B ) --> RR ) |
| 61 |
4 60
|
syl |
|- ( ph -> F : ( A [,] B ) --> RR ) |
| 62 |
|
fss |
|- ( ( F : ( A [,] B ) --> RR /\ RR C_ CC ) -> F : ( A [,] B ) --> CC ) |
| 63 |
61 58 62
|
sylancl |
|- ( ph -> F : ( A [,] B ) --> CC ) |
| 64 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
| 65 |
1 2 64
|
syl2anc |
|- ( ph -> ( A [,] B ) C_ RR ) |
| 66 |
|
iccssre |
|- ( ( A e. RR /\ C e. RR ) -> ( A [,] C ) C_ RR ) |
| 67 |
1 16 66
|
syl2anc |
|- ( ph -> ( A [,] C ) C_ RR ) |
| 68 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 69 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 70 |
68 69
|
dvres |
|- ( ( ( RR C_ CC /\ F : ( A [,] B ) --> CC ) /\ ( ( A [,] B ) C_ RR /\ ( A [,] C ) C_ RR ) ) -> ( RR _D ( F |` ( A [,] C ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] C ) ) ) ) |
| 71 |
59 63 65 67 70
|
syl22anc |
|- ( ph -> ( RR _D ( F |` ( A [,] C ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] C ) ) ) ) |
| 72 |
|
iccntr |
|- ( ( A e. RR /\ C e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] C ) ) = ( A (,) C ) ) |
| 73 |
1 16 72
|
syl2anc |
|- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] C ) ) = ( A (,) C ) ) |
| 74 |
73
|
reseq2d |
|- ( ph -> ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] C ) ) ) = ( ( RR _D F ) |` ( A (,) C ) ) ) |
| 75 |
71 74
|
eqtrd |
|- ( ph -> ( RR _D ( F |` ( A [,] C ) ) ) = ( ( RR _D F ) |` ( A (,) C ) ) ) |
| 76 |
75
|
dmeqd |
|- ( ph -> dom ( RR _D ( F |` ( A [,] C ) ) ) = dom ( ( RR _D F ) |` ( A (,) C ) ) ) |
| 77 |
|
dmres |
|- dom ( ( RR _D F ) |` ( A (,) C ) ) = ( ( A (,) C ) i^i dom ( RR _D F ) ) |
| 78 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
| 79 |
|
iooss2 |
|- ( ( B e. RR* /\ C <_ B ) -> ( A (,) C ) C_ ( A (,) B ) ) |
| 80 |
78 53 79
|
syl2anc |
|- ( ph -> ( A (,) C ) C_ ( A (,) B ) ) |
| 81 |
|
isof1o |
|- ( ( RR _D F ) Isom < , < ( ( A (,) B ) , W ) -> ( RR _D F ) : ( A (,) B ) -1-1-onto-> W ) |
| 82 |
|
f1odm |
|- ( ( RR _D F ) : ( A (,) B ) -1-1-onto-> W -> dom ( RR _D F ) = ( A (,) B ) ) |
| 83 |
5 81 82
|
3syl |
|- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
| 84 |
80 83
|
sseqtrrd |
|- ( ph -> ( A (,) C ) C_ dom ( RR _D F ) ) |
| 85 |
|
dfss2 |
|- ( ( A (,) C ) C_ dom ( RR _D F ) <-> ( ( A (,) C ) i^i dom ( RR _D F ) ) = ( A (,) C ) ) |
| 86 |
84 85
|
sylib |
|- ( ph -> ( ( A (,) C ) i^i dom ( RR _D F ) ) = ( A (,) C ) ) |
| 87 |
77 86
|
eqtrid |
|- ( ph -> dom ( ( RR _D F ) |` ( A (,) C ) ) = ( A (,) C ) ) |
| 88 |
76 87
|
eqtrd |
|- ( ph -> dom ( RR _D ( F |` ( A [,] C ) ) ) = ( A (,) C ) ) |
| 89 |
1 16 36 57 88
|
mvth |
|- ( ph -> E. x e. ( A (,) C ) ( ( RR _D ( F |` ( A [,] C ) ) ) ` x ) = ( ( ( ( F |` ( A [,] C ) ) ` C ) - ( ( F |` ( A [,] C ) ) ` A ) ) / ( C - A ) ) ) |
| 90 |
1 16 36
|
ltled |
|- ( ph -> A <_ C ) |
| 91 |
2
|
leidd |
|- ( ph -> B <_ B ) |
| 92 |
|
iccss |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( A <_ C /\ B <_ B ) ) -> ( C [,] B ) C_ ( A [,] B ) ) |
| 93 |
1 2 90 91 92
|
syl22anc |
|- ( ph -> ( C [,] B ) C_ ( A [,] B ) ) |
| 94 |
|
rescncf |
|- ( ( C [,] B ) C_ ( A [,] B ) -> ( F e. ( ( A [,] B ) -cn-> RR ) -> ( F |` ( C [,] B ) ) e. ( ( C [,] B ) -cn-> RR ) ) ) |
| 95 |
93 4 94
|
sylc |
|- ( ph -> ( F |` ( C [,] B ) ) e. ( ( C [,] B ) -cn-> RR ) ) |
| 96 |
|
iccssre |
|- ( ( C e. RR /\ B e. RR ) -> ( C [,] B ) C_ RR ) |
| 97 |
16 2 96
|
syl2anc |
|- ( ph -> ( C [,] B ) C_ RR ) |
| 98 |
68 69
|
dvres |
|- ( ( ( RR C_ CC /\ F : ( A [,] B ) --> CC ) /\ ( ( A [,] B ) C_ RR /\ ( C [,] B ) C_ RR ) ) -> ( RR _D ( F |` ( C [,] B ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( C [,] B ) ) ) ) |
| 99 |
59 63 65 97 98
|
syl22anc |
|- ( ph -> ( RR _D ( F |` ( C [,] B ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( C [,] B ) ) ) ) |
| 100 |
|
iccntr |
|- ( ( C e. RR /\ B e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( C [,] B ) ) = ( C (,) B ) ) |
| 101 |
16 2 100
|
syl2anc |
|- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( C [,] B ) ) = ( C (,) B ) ) |
| 102 |
101
|
reseq2d |
|- ( ph -> ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( C [,] B ) ) ) = ( ( RR _D F ) |` ( C (,) B ) ) ) |
| 103 |
99 102
|
eqtrd |
|- ( ph -> ( RR _D ( F |` ( C [,] B ) ) ) = ( ( RR _D F ) |` ( C (,) B ) ) ) |
| 104 |
103
|
dmeqd |
|- ( ph -> dom ( RR _D ( F |` ( C [,] B ) ) ) = dom ( ( RR _D F ) |` ( C (,) B ) ) ) |
| 105 |
|
dmres |
|- dom ( ( RR _D F ) |` ( C (,) B ) ) = ( ( C (,) B ) i^i dom ( RR _D F ) ) |
| 106 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
| 107 |
|
iooss1 |
|- ( ( A e. RR* /\ A <_ C ) -> ( C (,) B ) C_ ( A (,) B ) ) |
| 108 |
106 90 107
|
syl2anc |
|- ( ph -> ( C (,) B ) C_ ( A (,) B ) ) |
| 109 |
108 83
|
sseqtrrd |
|- ( ph -> ( C (,) B ) C_ dom ( RR _D F ) ) |
| 110 |
|
dfss2 |
|- ( ( C (,) B ) C_ dom ( RR _D F ) <-> ( ( C (,) B ) i^i dom ( RR _D F ) ) = ( C (,) B ) ) |
| 111 |
109 110
|
sylib |
|- ( ph -> ( ( C (,) B ) i^i dom ( RR _D F ) ) = ( C (,) B ) ) |
| 112 |
105 111
|
eqtrid |
|- ( ph -> dom ( ( RR _D F ) |` ( C (,) B ) ) = ( C (,) B ) ) |
| 113 |
104 112
|
eqtrd |
|- ( ph -> dom ( RR _D ( F |` ( C [,] B ) ) ) = ( C (,) B ) ) |
| 114 |
16 2 52 95 113
|
mvth |
|- ( ph -> E. y e. ( C (,) B ) ( ( RR _D ( F |` ( C [,] B ) ) ) ` y ) = ( ( ( ( F |` ( C [,] B ) ) ` B ) - ( ( F |` ( C [,] B ) ) ` C ) ) / ( B - C ) ) ) |
| 115 |
|
reeanv |
|- ( E. x e. ( A (,) C ) E. y e. ( C (,) B ) ( ( ( RR _D ( F |` ( A [,] C ) ) ) ` x ) = ( ( ( ( F |` ( A [,] C ) ) ` C ) - ( ( F |` ( A [,] C ) ) ` A ) ) / ( C - A ) ) /\ ( ( RR _D ( F |` ( C [,] B ) ) ) ` y ) = ( ( ( ( F |` ( C [,] B ) ) ` B ) - ( ( F |` ( C [,] B ) ) ` C ) ) / ( B - C ) ) ) <-> ( E. x e. ( A (,) C ) ( ( RR _D ( F |` ( A [,] C ) ) ) ` x ) = ( ( ( ( F |` ( A [,] C ) ) ` C ) - ( ( F |` ( A [,] C ) ) ` A ) ) / ( C - A ) ) /\ E. y e. ( C (,) B ) ( ( RR _D ( F |` ( C [,] B ) ) ) ` y ) = ( ( ( ( F |` ( C [,] B ) ) ` B ) - ( ( F |` ( C [,] B ) ) ` C ) ) / ( B - C ) ) ) ) |
| 116 |
75
|
fveq1d |
|- ( ph -> ( ( RR _D ( F |` ( A [,] C ) ) ) ` x ) = ( ( ( RR _D F ) |` ( A (,) C ) ) ` x ) ) |
| 117 |
|
fvres |
|- ( x e. ( A (,) C ) -> ( ( ( RR _D F ) |` ( A (,) C ) ) ` x ) = ( ( RR _D F ) ` x ) ) |
| 118 |
117
|
adantr |
|- ( ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) -> ( ( ( RR _D F ) |` ( A (,) C ) ) ` x ) = ( ( RR _D F ) ` x ) ) |
| 119 |
116 118
|
sylan9eq |
|- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> ( ( RR _D ( F |` ( A [,] C ) ) ) ` x ) = ( ( RR _D F ) ` x ) ) |
| 120 |
16
|
rexrd |
|- ( ph -> C e. RR* ) |
| 121 |
|
ubicc2 |
|- ( ( A e. RR* /\ C e. RR* /\ A <_ C ) -> C e. ( A [,] C ) ) |
| 122 |
106 120 90 121
|
syl3anc |
|- ( ph -> C e. ( A [,] C ) ) |
| 123 |
122
|
fvresd |
|- ( ph -> ( ( F |` ( A [,] C ) ) ` C ) = ( F ` C ) ) |
| 124 |
|
lbicc2 |
|- ( ( A e. RR* /\ C e. RR* /\ A <_ C ) -> A e. ( A [,] C ) ) |
| 125 |
106 120 90 124
|
syl3anc |
|- ( ph -> A e. ( A [,] C ) ) |
| 126 |
125
|
fvresd |
|- ( ph -> ( ( F |` ( A [,] C ) ) ` A ) = ( F ` A ) ) |
| 127 |
123 126
|
oveq12d |
|- ( ph -> ( ( ( F |` ( A [,] C ) ) ` C ) - ( ( F |` ( A [,] C ) ) ` A ) ) = ( ( F ` C ) - ( F ` A ) ) ) |
| 128 |
127
|
oveq1d |
|- ( ph -> ( ( ( ( F |` ( A [,] C ) ) ` C ) - ( ( F |` ( A [,] C ) ) ` A ) ) / ( C - A ) ) = ( ( ( F ` C ) - ( F ` A ) ) / ( C - A ) ) ) |
| 129 |
128
|
adantr |
|- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> ( ( ( ( F |` ( A [,] C ) ) ` C ) - ( ( F |` ( A [,] C ) ) ` A ) ) / ( C - A ) ) = ( ( ( F ` C ) - ( F ` A ) ) / ( C - A ) ) ) |
| 130 |
119 129
|
eqeq12d |
|- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> ( ( ( RR _D ( F |` ( A [,] C ) ) ) ` x ) = ( ( ( ( F |` ( A [,] C ) ) ` C ) - ( ( F |` ( A [,] C ) ) ` A ) ) / ( C - A ) ) <-> ( ( RR _D F ) ` x ) = ( ( ( F ` C ) - ( F ` A ) ) / ( C - A ) ) ) ) |
| 131 |
103
|
fveq1d |
|- ( ph -> ( ( RR _D ( F |` ( C [,] B ) ) ) ` y ) = ( ( ( RR _D F ) |` ( C (,) B ) ) ` y ) ) |
| 132 |
|
fvres |
|- ( y e. ( C (,) B ) -> ( ( ( RR _D F ) |` ( C (,) B ) ) ` y ) = ( ( RR _D F ) ` y ) ) |
| 133 |
132
|
adantl |
|- ( ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) -> ( ( ( RR _D F ) |` ( C (,) B ) ) ` y ) = ( ( RR _D F ) ` y ) ) |
| 134 |
131 133
|
sylan9eq |
|- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> ( ( RR _D ( F |` ( C [,] B ) ) ) ` y ) = ( ( RR _D F ) ` y ) ) |
| 135 |
|
ubicc2 |
|- ( ( C e. RR* /\ B e. RR* /\ C <_ B ) -> B e. ( C [,] B ) ) |
| 136 |
120 78 53 135
|
syl3anc |
|- ( ph -> B e. ( C [,] B ) ) |
| 137 |
136
|
fvresd |
|- ( ph -> ( ( F |` ( C [,] B ) ) ` B ) = ( F ` B ) ) |
| 138 |
|
lbicc2 |
|- ( ( C e. RR* /\ B e. RR* /\ C <_ B ) -> C e. ( C [,] B ) ) |
| 139 |
120 78 53 138
|
syl3anc |
|- ( ph -> C e. ( C [,] B ) ) |
| 140 |
139
|
fvresd |
|- ( ph -> ( ( F |` ( C [,] B ) ) ` C ) = ( F ` C ) ) |
| 141 |
137 140
|
oveq12d |
|- ( ph -> ( ( ( F |` ( C [,] B ) ) ` B ) - ( ( F |` ( C [,] B ) ) ` C ) ) = ( ( F ` B ) - ( F ` C ) ) ) |
| 142 |
141
|
oveq1d |
|- ( ph -> ( ( ( ( F |` ( C [,] B ) ) ` B ) - ( ( F |` ( C [,] B ) ) ` C ) ) / ( B - C ) ) = ( ( ( F ` B ) - ( F ` C ) ) / ( B - C ) ) ) |
| 143 |
142
|
adantr |
|- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> ( ( ( ( F |` ( C [,] B ) ) ` B ) - ( ( F |` ( C [,] B ) ) ` C ) ) / ( B - C ) ) = ( ( ( F ` B ) - ( F ` C ) ) / ( B - C ) ) ) |
| 144 |
134 143
|
eqeq12d |
|- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> ( ( ( RR _D ( F |` ( C [,] B ) ) ) ` y ) = ( ( ( ( F |` ( C [,] B ) ) ` B ) - ( ( F |` ( C [,] B ) ) ` C ) ) / ( B - C ) ) <-> ( ( RR _D F ) ` y ) = ( ( ( F ` B ) - ( F ` C ) ) / ( B - C ) ) ) ) |
| 145 |
130 144
|
anbi12d |
|- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> ( ( ( ( RR _D ( F |` ( A [,] C ) ) ) ` x ) = ( ( ( ( F |` ( A [,] C ) ) ` C ) - ( ( F |` ( A [,] C ) ) ` A ) ) / ( C - A ) ) /\ ( ( RR _D ( F |` ( C [,] B ) ) ) ` y ) = ( ( ( ( F |` ( C [,] B ) ) ` B ) - ( ( F |` ( C [,] B ) ) ` C ) ) / ( B - C ) ) ) <-> ( ( ( RR _D F ) ` x ) = ( ( ( F ` C ) - ( F ` A ) ) / ( C - A ) ) /\ ( ( RR _D F ) ` y ) = ( ( ( F ` B ) - ( F ` C ) ) / ( B - C ) ) ) ) ) |
| 146 |
|
elioore |
|- ( x e. ( A (,) C ) -> x e. RR ) |
| 147 |
146
|
ad2antrl |
|- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> x e. RR ) |
| 148 |
16
|
adantr |
|- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> C e. RR ) |
| 149 |
|
elioore |
|- ( y e. ( C (,) B ) -> y e. RR ) |
| 150 |
149
|
ad2antll |
|- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> y e. RR ) |
| 151 |
|
eliooord |
|- ( x e. ( A (,) C ) -> ( A < x /\ x < C ) ) |
| 152 |
151
|
ad2antrl |
|- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> ( A < x /\ x < C ) ) |
| 153 |
152
|
simprd |
|- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> x < C ) |
| 154 |
|
eliooord |
|- ( y e. ( C (,) B ) -> ( C < y /\ y < B ) ) |
| 155 |
154
|
ad2antll |
|- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> ( C < y /\ y < B ) ) |
| 156 |
155
|
simpld |
|- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> C < y ) |
| 157 |
147 148 150 153 156
|
lttrd |
|- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> x < y ) |
| 158 |
5
|
adantr |
|- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> ( RR _D F ) Isom < , < ( ( A (,) B ) , W ) ) |
| 159 |
80
|
sselda |
|- ( ( ph /\ x e. ( A (,) C ) ) -> x e. ( A (,) B ) ) |
| 160 |
159
|
adantrr |
|- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> x e. ( A (,) B ) ) |
| 161 |
108
|
sselda |
|- ( ( ph /\ y e. ( C (,) B ) ) -> y e. ( A (,) B ) ) |
| 162 |
161
|
adantrl |
|- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> y e. ( A (,) B ) ) |
| 163 |
|
isorel |
|- ( ( ( RR _D F ) Isom < , < ( ( A (,) B ) , W ) /\ ( x e. ( A (,) B ) /\ y e. ( A (,) B ) ) ) -> ( x < y <-> ( ( RR _D F ) ` x ) < ( ( RR _D F ) ` y ) ) ) |
| 164 |
158 160 162 163
|
syl12anc |
|- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> ( x < y <-> ( ( RR _D F ) ` x ) < ( ( RR _D F ) ` y ) ) ) |
| 165 |
157 164
|
mpbid |
|- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> ( ( RR _D F ) ` x ) < ( ( RR _D F ) ` y ) ) |
| 166 |
|
breq12 |
|- ( ( ( ( RR _D F ) ` x ) = ( ( ( F ` C ) - ( F ` A ) ) / ( C - A ) ) /\ ( ( RR _D F ) ` y ) = ( ( ( F ` B ) - ( F ` C ) ) / ( B - C ) ) ) -> ( ( ( RR _D F ) ` x ) < ( ( RR _D F ) ` y ) <-> ( ( ( F ` C ) - ( F ` A ) ) / ( C - A ) ) < ( ( ( F ` B ) - ( F ` C ) ) / ( B - C ) ) ) ) |
| 167 |
165 166
|
syl5ibcom |
|- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> ( ( ( ( RR _D F ) ` x ) = ( ( ( F ` C ) - ( F ` A ) ) / ( C - A ) ) /\ ( ( RR _D F ) ` y ) = ( ( ( F ` B ) - ( F ` C ) ) / ( B - C ) ) ) -> ( ( ( F ` C ) - ( F ` A ) ) / ( C - A ) ) < ( ( ( F ` B ) - ( F ` C ) ) / ( B - C ) ) ) ) |
| 168 |
55 122
|
sseldd |
|- ( ph -> C e. ( A [,] B ) ) |
| 169 |
61 168
|
ffvelcdmd |
|- ( ph -> ( F ` C ) e. RR ) |
| 170 |
55 125
|
sseldd |
|- ( ph -> A e. ( A [,] B ) ) |
| 171 |
61 170
|
ffvelcdmd |
|- ( ph -> ( F ` A ) e. RR ) |
| 172 |
169 171
|
resubcld |
|- ( ph -> ( ( F ` C ) - ( F ` A ) ) e. RR ) |
| 173 |
29
|
gt0ne0d |
|- ( ph -> ( 1 - T ) =/= 0 ) |
| 174 |
172 13 173
|
redivcld |
|- ( ph -> ( ( ( F ` C ) - ( F ` A ) ) / ( 1 - T ) ) e. RR ) |
| 175 |
93 136
|
sseldd |
|- ( ph -> B e. ( A [,] B ) ) |
| 176 |
61 175
|
ffvelcdmd |
|- ( ph -> ( F ` B ) e. RR ) |
| 177 |
176 169
|
resubcld |
|- ( ph -> ( ( F ` B ) - ( F ` C ) ) e. RR ) |
| 178 |
44
|
gt0ne0d |
|- ( ph -> T =/= 0 ) |
| 179 |
177 9 178
|
redivcld |
|- ( ph -> ( ( ( F ` B ) - ( F ` C ) ) / T ) e. RR ) |
| 180 |
2 1
|
resubcld |
|- ( ph -> ( B - A ) e. RR ) |
| 181 |
1 2
|
posdifd |
|- ( ph -> ( A < B <-> 0 < ( B - A ) ) ) |
| 182 |
3 181
|
mpbid |
|- ( ph -> 0 < ( B - A ) ) |
| 183 |
|
ltdiv1 |
|- ( ( ( ( ( F ` C ) - ( F ` A ) ) / ( 1 - T ) ) e. RR /\ ( ( ( F ` B ) - ( F ` C ) ) / T ) e. RR /\ ( ( B - A ) e. RR /\ 0 < ( B - A ) ) ) -> ( ( ( ( F ` C ) - ( F ` A ) ) / ( 1 - T ) ) < ( ( ( F ` B ) - ( F ` C ) ) / T ) <-> ( ( ( ( F ` C ) - ( F ` A ) ) / ( 1 - T ) ) / ( B - A ) ) < ( ( ( ( F ` B ) - ( F ` C ) ) / T ) / ( B - A ) ) ) ) |
| 184 |
174 179 180 182 183
|
syl112anc |
|- ( ph -> ( ( ( ( F ` C ) - ( F ` A ) ) / ( 1 - T ) ) < ( ( ( F ` B ) - ( F ` C ) ) / T ) <-> ( ( ( ( F ` C ) - ( F ` A ) ) / ( 1 - T ) ) / ( B - A ) ) < ( ( ( ( F ` B ) - ( F ` C ) ) / T ) / ( B - A ) ) ) ) |
| 185 |
172
|
recnd |
|- ( ph -> ( ( F ` C ) - ( F ` A ) ) e. CC ) |
| 186 |
185 18
|
mulcomd |
|- ( ph -> ( ( ( F ` C ) - ( F ` A ) ) x. T ) = ( T x. ( ( F ` C ) - ( F ` A ) ) ) ) |
| 187 |
169
|
recnd |
|- ( ph -> ( F ` C ) e. CC ) |
| 188 |
171
|
recnd |
|- ( ph -> ( F ` A ) e. CC ) |
| 189 |
18 187 188
|
subdid |
|- ( ph -> ( T x. ( ( F ` C ) - ( F ` A ) ) ) = ( ( T x. ( F ` C ) ) - ( T x. ( F ` A ) ) ) ) |
| 190 |
186 189
|
eqtrd |
|- ( ph -> ( ( ( F ` C ) - ( F ` A ) ) x. T ) = ( ( T x. ( F ` C ) ) - ( T x. ( F ` A ) ) ) ) |
| 191 |
177
|
recnd |
|- ( ph -> ( ( F ` B ) - ( F ` C ) ) e. CC ) |
| 192 |
13
|
recnd |
|- ( ph -> ( 1 - T ) e. CC ) |
| 193 |
191 192
|
mulcomd |
|- ( ph -> ( ( ( F ` B ) - ( F ` C ) ) x. ( 1 - T ) ) = ( ( 1 - T ) x. ( ( F ` B ) - ( F ` C ) ) ) ) |
| 194 |
176
|
recnd |
|- ( ph -> ( F ` B ) e. CC ) |
| 195 |
192 194 187
|
subdid |
|- ( ph -> ( ( 1 - T ) x. ( ( F ` B ) - ( F ` C ) ) ) = ( ( ( 1 - T ) x. ( F ` B ) ) - ( ( 1 - T ) x. ( F ` C ) ) ) ) |
| 196 |
193 195
|
eqtrd |
|- ( ph -> ( ( ( F ` B ) - ( F ` C ) ) x. ( 1 - T ) ) = ( ( ( 1 - T ) x. ( F ` B ) ) - ( ( 1 - T ) x. ( F ` C ) ) ) ) |
| 197 |
190 196
|
breq12d |
|- ( ph -> ( ( ( ( F ` C ) - ( F ` A ) ) x. T ) < ( ( ( F ` B ) - ( F ` C ) ) x. ( 1 - T ) ) <-> ( ( T x. ( F ` C ) ) - ( T x. ( F ` A ) ) ) < ( ( ( 1 - T ) x. ( F ` B ) ) - ( ( 1 - T ) x. ( F ` C ) ) ) ) ) |
| 198 |
9 44
|
jca |
|- ( ph -> ( T e. RR /\ 0 < T ) ) |
| 199 |
13 29
|
jca |
|- ( ph -> ( ( 1 - T ) e. RR /\ 0 < ( 1 - T ) ) ) |
| 200 |
|
lt2mul2div |
|- ( ( ( ( ( F ` C ) - ( F ` A ) ) e. RR /\ ( T e. RR /\ 0 < T ) ) /\ ( ( ( F ` B ) - ( F ` C ) ) e. RR /\ ( ( 1 - T ) e. RR /\ 0 < ( 1 - T ) ) ) ) -> ( ( ( ( F ` C ) - ( F ` A ) ) x. T ) < ( ( ( F ` B ) - ( F ` C ) ) x. ( 1 - T ) ) <-> ( ( ( F ` C ) - ( F ` A ) ) / ( 1 - T ) ) < ( ( ( F ` B ) - ( F ` C ) ) / T ) ) ) |
| 201 |
172 198 177 199 200
|
syl22anc |
|- ( ph -> ( ( ( ( F ` C ) - ( F ` A ) ) x. T ) < ( ( ( F ` B ) - ( F ` C ) ) x. ( 1 - T ) ) <-> ( ( ( F ` C ) - ( F ` A ) ) / ( 1 - T ) ) < ( ( ( F ` B ) - ( F ` C ) ) / T ) ) ) |
| 202 |
9 169
|
remulcld |
|- ( ph -> ( T x. ( F ` C ) ) e. RR ) |
| 203 |
202
|
recnd |
|- ( ph -> ( T x. ( F ` C ) ) e. CC ) |
| 204 |
13 169
|
remulcld |
|- ( ph -> ( ( 1 - T ) x. ( F ` C ) ) e. RR ) |
| 205 |
204
|
recnd |
|- ( ph -> ( ( 1 - T ) x. ( F ` C ) ) e. CC ) |
| 206 |
9 171
|
remulcld |
|- ( ph -> ( T x. ( F ` A ) ) e. RR ) |
| 207 |
206
|
recnd |
|- ( ph -> ( T x. ( F ` A ) ) e. CC ) |
| 208 |
203 205 207
|
addsubd |
|- ( ph -> ( ( ( T x. ( F ` C ) ) + ( ( 1 - T ) x. ( F ` C ) ) ) - ( T x. ( F ` A ) ) ) = ( ( ( T x. ( F ` C ) ) - ( T x. ( F ` A ) ) ) + ( ( 1 - T ) x. ( F ` C ) ) ) ) |
| 209 |
|
ax-1cn |
|- 1 e. CC |
| 210 |
|
pncan3 |
|- ( ( T e. CC /\ 1 e. CC ) -> ( T + ( 1 - T ) ) = 1 ) |
| 211 |
18 209 210
|
sylancl |
|- ( ph -> ( T + ( 1 - T ) ) = 1 ) |
| 212 |
211
|
oveq1d |
|- ( ph -> ( ( T + ( 1 - T ) ) x. ( F ` C ) ) = ( 1 x. ( F ` C ) ) ) |
| 213 |
18 192 187
|
adddird |
|- ( ph -> ( ( T + ( 1 - T ) ) x. ( F ` C ) ) = ( ( T x. ( F ` C ) ) + ( ( 1 - T ) x. ( F ` C ) ) ) ) |
| 214 |
187
|
mullidd |
|- ( ph -> ( 1 x. ( F ` C ) ) = ( F ` C ) ) |
| 215 |
212 213 214
|
3eqtr3d |
|- ( ph -> ( ( T x. ( F ` C ) ) + ( ( 1 - T ) x. ( F ` C ) ) ) = ( F ` C ) ) |
| 216 |
215
|
oveq1d |
|- ( ph -> ( ( ( T x. ( F ` C ) ) + ( ( 1 - T ) x. ( F ` C ) ) ) - ( T x. ( F ` A ) ) ) = ( ( F ` C ) - ( T x. ( F ` A ) ) ) ) |
| 217 |
208 216
|
eqtr3d |
|- ( ph -> ( ( ( T x. ( F ` C ) ) - ( T x. ( F ` A ) ) ) + ( ( 1 - T ) x. ( F ` C ) ) ) = ( ( F ` C ) - ( T x. ( F ` A ) ) ) ) |
| 218 |
217
|
breq1d |
|- ( ph -> ( ( ( ( T x. ( F ` C ) ) - ( T x. ( F ` A ) ) ) + ( ( 1 - T ) x. ( F ` C ) ) ) < ( ( 1 - T ) x. ( F ` B ) ) <-> ( ( F ` C ) - ( T x. ( F ` A ) ) ) < ( ( 1 - T ) x. ( F ` B ) ) ) ) |
| 219 |
202 206
|
resubcld |
|- ( ph -> ( ( T x. ( F ` C ) ) - ( T x. ( F ` A ) ) ) e. RR ) |
| 220 |
13 176
|
remulcld |
|- ( ph -> ( ( 1 - T ) x. ( F ` B ) ) e. RR ) |
| 221 |
219 204 220
|
ltaddsubd |
|- ( ph -> ( ( ( ( T x. ( F ` C ) ) - ( T x. ( F ` A ) ) ) + ( ( 1 - T ) x. ( F ` C ) ) ) < ( ( 1 - T ) x. ( F ` B ) ) <-> ( ( T x. ( F ` C ) ) - ( T x. ( F ` A ) ) ) < ( ( ( 1 - T ) x. ( F ` B ) ) - ( ( 1 - T ) x. ( F ` C ) ) ) ) ) |
| 222 |
169 206 220
|
ltsubadd2d |
|- ( ph -> ( ( ( F ` C ) - ( T x. ( F ` A ) ) ) < ( ( 1 - T ) x. ( F ` B ) ) <-> ( F ` C ) < ( ( T x. ( F ` A ) ) + ( ( 1 - T ) x. ( F ` B ) ) ) ) ) |
| 223 |
218 221 222
|
3bitr3d |
|- ( ph -> ( ( ( T x. ( F ` C ) ) - ( T x. ( F ` A ) ) ) < ( ( ( 1 - T ) x. ( F ` B ) ) - ( ( 1 - T ) x. ( F ` C ) ) ) <-> ( F ` C ) < ( ( T x. ( F ` A ) ) + ( ( 1 - T ) x. ( F ` B ) ) ) ) ) |
| 224 |
197 201 223
|
3bitr3d |
|- ( ph -> ( ( ( ( F ` C ) - ( F ` A ) ) / ( 1 - T ) ) < ( ( ( F ` B ) - ( F ` C ) ) / T ) <-> ( F ` C ) < ( ( T x. ( F ` A ) ) + ( ( 1 - T ) x. ( F ` B ) ) ) ) ) |
| 225 |
180
|
recnd |
|- ( ph -> ( B - A ) e. CC ) |
| 226 |
182
|
gt0ne0d |
|- ( ph -> ( B - A ) =/= 0 ) |
| 227 |
185 192 225 173 226
|
divdiv1d |
|- ( ph -> ( ( ( ( F ` C ) - ( F ` A ) ) / ( 1 - T ) ) / ( B - A ) ) = ( ( ( F ` C ) - ( F ` A ) ) / ( ( 1 - T ) x. ( B - A ) ) ) ) |
| 228 |
23
|
oveq2d |
|- ( ph -> ( ( ( 1 - T ) x. B ) - ( ( 1 - T ) x. A ) ) = ( ( ( 1 - T ) x. B ) - ( A - ( T x. A ) ) ) ) |
| 229 |
14
|
recnd |
|- ( ph -> ( ( 1 - T ) x. B ) e. CC ) |
| 230 |
10
|
recnd |
|- ( ph -> ( T x. A ) e. CC ) |
| 231 |
229 19 230
|
subsub3d |
|- ( ph -> ( ( ( 1 - T ) x. B ) - ( A - ( T x. A ) ) ) = ( ( ( ( 1 - T ) x. B ) + ( T x. A ) ) - A ) ) |
| 232 |
228 231
|
eqtrd |
|- ( ph -> ( ( ( 1 - T ) x. B ) - ( ( 1 - T ) x. A ) ) = ( ( ( ( 1 - T ) x. B ) + ( T x. A ) ) - A ) ) |
| 233 |
192 38 19
|
subdid |
|- ( ph -> ( ( 1 - T ) x. ( B - A ) ) = ( ( ( 1 - T ) x. B ) - ( ( 1 - T ) x. A ) ) ) |
| 234 |
230 229
|
addcomd |
|- ( ph -> ( ( T x. A ) + ( ( 1 - T ) x. B ) ) = ( ( ( 1 - T ) x. B ) + ( T x. A ) ) ) |
| 235 |
7 234
|
eqtrid |
|- ( ph -> C = ( ( ( 1 - T ) x. B ) + ( T x. A ) ) ) |
| 236 |
235
|
oveq1d |
|- ( ph -> ( C - A ) = ( ( ( ( 1 - T ) x. B ) + ( T x. A ) ) - A ) ) |
| 237 |
232 233 236
|
3eqtr4d |
|- ( ph -> ( ( 1 - T ) x. ( B - A ) ) = ( C - A ) ) |
| 238 |
237
|
oveq2d |
|- ( ph -> ( ( ( F ` C ) - ( F ` A ) ) / ( ( 1 - T ) x. ( B - A ) ) ) = ( ( ( F ` C ) - ( F ` A ) ) / ( C - A ) ) ) |
| 239 |
227 238
|
eqtrd |
|- ( ph -> ( ( ( ( F ` C ) - ( F ` A ) ) / ( 1 - T ) ) / ( B - A ) ) = ( ( ( F ` C ) - ( F ` A ) ) / ( C - A ) ) ) |
| 240 |
191 18 225 178 226
|
divdiv1d |
|- ( ph -> ( ( ( ( F ` B ) - ( F ` C ) ) / T ) / ( B - A ) ) = ( ( ( F ` B ) - ( F ` C ) ) / ( T x. ( B - A ) ) ) ) |
| 241 |
38 229 230
|
subsub4d |
|- ( ph -> ( ( B - ( ( 1 - T ) x. B ) ) - ( T x. A ) ) = ( B - ( ( ( 1 - T ) x. B ) + ( T x. A ) ) ) ) |
| 242 |
42
|
oveq2d |
|- ( ph -> ( B - ( ( 1 - T ) x. B ) ) = ( B - ( B - ( T x. B ) ) ) ) |
| 243 |
43
|
recnd |
|- ( ph -> ( T x. B ) e. CC ) |
| 244 |
38 243
|
nncand |
|- ( ph -> ( B - ( B - ( T x. B ) ) ) = ( T x. B ) ) |
| 245 |
242 244
|
eqtrd |
|- ( ph -> ( B - ( ( 1 - T ) x. B ) ) = ( T x. B ) ) |
| 246 |
245
|
oveq1d |
|- ( ph -> ( ( B - ( ( 1 - T ) x. B ) ) - ( T x. A ) ) = ( ( T x. B ) - ( T x. A ) ) ) |
| 247 |
241 246
|
eqtr3d |
|- ( ph -> ( B - ( ( ( 1 - T ) x. B ) + ( T x. A ) ) ) = ( ( T x. B ) - ( T x. A ) ) ) |
| 248 |
235
|
oveq2d |
|- ( ph -> ( B - C ) = ( B - ( ( ( 1 - T ) x. B ) + ( T x. A ) ) ) ) |
| 249 |
18 38 19
|
subdid |
|- ( ph -> ( T x. ( B - A ) ) = ( ( T x. B ) - ( T x. A ) ) ) |
| 250 |
247 248 249
|
3eqtr4d |
|- ( ph -> ( B - C ) = ( T x. ( B - A ) ) ) |
| 251 |
250
|
oveq2d |
|- ( ph -> ( ( ( F ` B ) - ( F ` C ) ) / ( B - C ) ) = ( ( ( F ` B ) - ( F ` C ) ) / ( T x. ( B - A ) ) ) ) |
| 252 |
240 251
|
eqtr4d |
|- ( ph -> ( ( ( ( F ` B ) - ( F ` C ) ) / T ) / ( B - A ) ) = ( ( ( F ` B ) - ( F ` C ) ) / ( B - C ) ) ) |
| 253 |
239 252
|
breq12d |
|- ( ph -> ( ( ( ( ( F ` C ) - ( F ` A ) ) / ( 1 - T ) ) / ( B - A ) ) < ( ( ( ( F ` B ) - ( F ` C ) ) / T ) / ( B - A ) ) <-> ( ( ( F ` C ) - ( F ` A ) ) / ( C - A ) ) < ( ( ( F ` B ) - ( F ` C ) ) / ( B - C ) ) ) ) |
| 254 |
184 224 253
|
3bitr3rd |
|- ( ph -> ( ( ( ( F ` C ) - ( F ` A ) ) / ( C - A ) ) < ( ( ( F ` B ) - ( F ` C ) ) / ( B - C ) ) <-> ( F ` C ) < ( ( T x. ( F ` A ) ) + ( ( 1 - T ) x. ( F ` B ) ) ) ) ) |
| 255 |
254
|
adantr |
|- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> ( ( ( ( F ` C ) - ( F ` A ) ) / ( C - A ) ) < ( ( ( F ` B ) - ( F ` C ) ) / ( B - C ) ) <-> ( F ` C ) < ( ( T x. ( F ` A ) ) + ( ( 1 - T ) x. ( F ` B ) ) ) ) ) |
| 256 |
167 255
|
sylibd |
|- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> ( ( ( ( RR _D F ) ` x ) = ( ( ( F ` C ) - ( F ` A ) ) / ( C - A ) ) /\ ( ( RR _D F ) ` y ) = ( ( ( F ` B ) - ( F ` C ) ) / ( B - C ) ) ) -> ( F ` C ) < ( ( T x. ( F ` A ) ) + ( ( 1 - T ) x. ( F ` B ) ) ) ) ) |
| 257 |
145 256
|
sylbid |
|- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> ( ( ( ( RR _D ( F |` ( A [,] C ) ) ) ` x ) = ( ( ( ( F |` ( A [,] C ) ) ` C ) - ( ( F |` ( A [,] C ) ) ` A ) ) / ( C - A ) ) /\ ( ( RR _D ( F |` ( C [,] B ) ) ) ` y ) = ( ( ( ( F |` ( C [,] B ) ) ` B ) - ( ( F |` ( C [,] B ) ) ` C ) ) / ( B - C ) ) ) -> ( F ` C ) < ( ( T x. ( F ` A ) ) + ( ( 1 - T ) x. ( F ` B ) ) ) ) ) |
| 258 |
257
|
rexlimdvva |
|- ( ph -> ( E. x e. ( A (,) C ) E. y e. ( C (,) B ) ( ( ( RR _D ( F |` ( A [,] C ) ) ) ` x ) = ( ( ( ( F |` ( A [,] C ) ) ` C ) - ( ( F |` ( A [,] C ) ) ` A ) ) / ( C - A ) ) /\ ( ( RR _D ( F |` ( C [,] B ) ) ) ` y ) = ( ( ( ( F |` ( C [,] B ) ) ` B ) - ( ( F |` ( C [,] B ) ) ` C ) ) / ( B - C ) ) ) -> ( F ` C ) < ( ( T x. ( F ` A ) ) + ( ( 1 - T ) x. ( F ` B ) ) ) ) ) |
| 259 |
115 258
|
biimtrrid |
|- ( ph -> ( ( E. x e. ( A (,) C ) ( ( RR _D ( F |` ( A [,] C ) ) ) ` x ) = ( ( ( ( F |` ( A [,] C ) ) ` C ) - ( ( F |` ( A [,] C ) ) ` A ) ) / ( C - A ) ) /\ E. y e. ( C (,) B ) ( ( RR _D ( F |` ( C [,] B ) ) ) ` y ) = ( ( ( ( F |` ( C [,] B ) ) ` B ) - ( ( F |` ( C [,] B ) ) ` C ) ) / ( B - C ) ) ) -> ( F ` C ) < ( ( T x. ( F ` A ) ) + ( ( 1 - T ) x. ( F ` B ) ) ) ) ) |
| 260 |
89 114 259
|
mp2and |
|- ( ph -> ( F ` C ) < ( ( T x. ( F ` A ) ) + ( ( 1 - T ) x. ( F ` B ) ) ) ) |