| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnelprrecn |  |-  CC e. { RR , CC } | 
						
							| 2 | 1 | a1i |  |-  ( A e. RR+ -> CC e. { RR , CC } ) | 
						
							| 3 |  | simpr |  |-  ( ( A e. RR+ /\ x e. CC ) -> x e. CC ) | 
						
							| 4 |  | relogcl |  |-  ( A e. RR+ -> ( log ` A ) e. RR ) | 
						
							| 5 | 4 | adantr |  |-  ( ( A e. RR+ /\ x e. CC ) -> ( log ` A ) e. RR ) | 
						
							| 6 | 5 | recnd |  |-  ( ( A e. RR+ /\ x e. CC ) -> ( log ` A ) e. CC ) | 
						
							| 7 | 3 6 | mulcld |  |-  ( ( A e. RR+ /\ x e. CC ) -> ( x x. ( log ` A ) ) e. CC ) | 
						
							| 8 |  | efcl |  |-  ( y e. CC -> ( exp ` y ) e. CC ) | 
						
							| 9 | 8 | adantl |  |-  ( ( A e. RR+ /\ y e. CC ) -> ( exp ` y ) e. CC ) | 
						
							| 10 | 3 6 | mulcomd |  |-  ( ( A e. RR+ /\ x e. CC ) -> ( x x. ( log ` A ) ) = ( ( log ` A ) x. x ) ) | 
						
							| 11 | 10 | mpteq2dva |  |-  ( A e. RR+ -> ( x e. CC |-> ( x x. ( log ` A ) ) ) = ( x e. CC |-> ( ( log ` A ) x. x ) ) ) | 
						
							| 12 | 11 | oveq2d |  |-  ( A e. RR+ -> ( CC _D ( x e. CC |-> ( x x. ( log ` A ) ) ) ) = ( CC _D ( x e. CC |-> ( ( log ` A ) x. x ) ) ) ) | 
						
							| 13 |  | 1cnd |  |-  ( ( A e. RR+ /\ x e. CC ) -> 1 e. CC ) | 
						
							| 14 | 2 | dvmptid |  |-  ( A e. RR+ -> ( CC _D ( x e. CC |-> x ) ) = ( x e. CC |-> 1 ) ) | 
						
							| 15 | 4 | recnd |  |-  ( A e. RR+ -> ( log ` A ) e. CC ) | 
						
							| 16 | 2 3 13 14 15 | dvmptcmul |  |-  ( A e. RR+ -> ( CC _D ( x e. CC |-> ( ( log ` A ) x. x ) ) ) = ( x e. CC |-> ( ( log ` A ) x. 1 ) ) ) | 
						
							| 17 | 6 | mulridd |  |-  ( ( A e. RR+ /\ x e. CC ) -> ( ( log ` A ) x. 1 ) = ( log ` A ) ) | 
						
							| 18 | 17 | mpteq2dva |  |-  ( A e. RR+ -> ( x e. CC |-> ( ( log ` A ) x. 1 ) ) = ( x e. CC |-> ( log ` A ) ) ) | 
						
							| 19 | 12 16 18 | 3eqtrd |  |-  ( A e. RR+ -> ( CC _D ( x e. CC |-> ( x x. ( log ` A ) ) ) ) = ( x e. CC |-> ( log ` A ) ) ) | 
						
							| 20 |  | dvef |  |-  ( CC _D exp ) = exp | 
						
							| 21 |  | eff |  |-  exp : CC --> CC | 
						
							| 22 | 21 | a1i |  |-  ( A e. RR+ -> exp : CC --> CC ) | 
						
							| 23 | 22 | feqmptd |  |-  ( A e. RR+ -> exp = ( y e. CC |-> ( exp ` y ) ) ) | 
						
							| 24 | 23 | eqcomd |  |-  ( A e. RR+ -> ( y e. CC |-> ( exp ` y ) ) = exp ) | 
						
							| 25 | 24 | oveq2d |  |-  ( A e. RR+ -> ( CC _D ( y e. CC |-> ( exp ` y ) ) ) = ( CC _D exp ) ) | 
						
							| 26 | 20 25 24 | 3eqtr4a |  |-  ( A e. RR+ -> ( CC _D ( y e. CC |-> ( exp ` y ) ) ) = ( y e. CC |-> ( exp ` y ) ) ) | 
						
							| 27 |  | fveq2 |  |-  ( y = ( x x. ( log ` A ) ) -> ( exp ` y ) = ( exp ` ( x x. ( log ` A ) ) ) ) | 
						
							| 28 | 2 2 7 5 9 9 19 26 27 27 | dvmptco |  |-  ( A e. RR+ -> ( CC _D ( x e. CC |-> ( exp ` ( x x. ( log ` A ) ) ) ) ) = ( x e. CC |-> ( ( exp ` ( x x. ( log ` A ) ) ) x. ( log ` A ) ) ) ) | 
						
							| 29 |  | rpcn |  |-  ( A e. RR+ -> A e. CC ) | 
						
							| 30 | 29 | adantr |  |-  ( ( A e. RR+ /\ x e. CC ) -> A e. CC ) | 
						
							| 31 |  | rpne0 |  |-  ( A e. RR+ -> A =/= 0 ) | 
						
							| 32 | 31 | adantr |  |-  ( ( A e. RR+ /\ x e. CC ) -> A =/= 0 ) | 
						
							| 33 | 30 32 3 | cxpefd |  |-  ( ( A e. RR+ /\ x e. CC ) -> ( A ^c x ) = ( exp ` ( x x. ( log ` A ) ) ) ) | 
						
							| 34 | 33 | mpteq2dva |  |-  ( A e. RR+ -> ( x e. CC |-> ( A ^c x ) ) = ( x e. CC |-> ( exp ` ( x x. ( log ` A ) ) ) ) ) | 
						
							| 35 | 34 | oveq2d |  |-  ( A e. RR+ -> ( CC _D ( x e. CC |-> ( A ^c x ) ) ) = ( CC _D ( x e. CC |-> ( exp ` ( x x. ( log ` A ) ) ) ) ) ) | 
						
							| 36 | 30 3 | cxpcld |  |-  ( ( A e. RR+ /\ x e. CC ) -> ( A ^c x ) e. CC ) | 
						
							| 37 | 6 36 | mulcomd |  |-  ( ( A e. RR+ /\ x e. CC ) -> ( ( log ` A ) x. ( A ^c x ) ) = ( ( A ^c x ) x. ( log ` A ) ) ) | 
						
							| 38 | 33 | oveq1d |  |-  ( ( A e. RR+ /\ x e. CC ) -> ( ( A ^c x ) x. ( log ` A ) ) = ( ( exp ` ( x x. ( log ` A ) ) ) x. ( log ` A ) ) ) | 
						
							| 39 | 37 38 | eqtrd |  |-  ( ( A e. RR+ /\ x e. CC ) -> ( ( log ` A ) x. ( A ^c x ) ) = ( ( exp ` ( x x. ( log ` A ) ) ) x. ( log ` A ) ) ) | 
						
							| 40 | 39 | mpteq2dva |  |-  ( A e. RR+ -> ( x e. CC |-> ( ( log ` A ) x. ( A ^c x ) ) ) = ( x e. CC |-> ( ( exp ` ( x x. ( log ` A ) ) ) x. ( log ` A ) ) ) ) | 
						
							| 41 | 28 35 40 | 3eqtr4d |  |-  ( A e. RR+ -> ( CC _D ( x e. CC |-> ( A ^c x ) ) ) = ( x e. CC |-> ( ( log ` A ) x. ( A ^c x ) ) ) ) |