Step |
Hyp |
Ref |
Expression |
1 |
|
cnelprrecn |
|- CC e. { RR , CC } |
2 |
1
|
a1i |
|- ( A e. RR+ -> CC e. { RR , CC } ) |
3 |
|
simpr |
|- ( ( A e. RR+ /\ x e. CC ) -> x e. CC ) |
4 |
|
relogcl |
|- ( A e. RR+ -> ( log ` A ) e. RR ) |
5 |
4
|
adantr |
|- ( ( A e. RR+ /\ x e. CC ) -> ( log ` A ) e. RR ) |
6 |
5
|
recnd |
|- ( ( A e. RR+ /\ x e. CC ) -> ( log ` A ) e. CC ) |
7 |
3 6
|
mulcld |
|- ( ( A e. RR+ /\ x e. CC ) -> ( x x. ( log ` A ) ) e. CC ) |
8 |
|
efcl |
|- ( y e. CC -> ( exp ` y ) e. CC ) |
9 |
8
|
adantl |
|- ( ( A e. RR+ /\ y e. CC ) -> ( exp ` y ) e. CC ) |
10 |
3 6
|
mulcomd |
|- ( ( A e. RR+ /\ x e. CC ) -> ( x x. ( log ` A ) ) = ( ( log ` A ) x. x ) ) |
11 |
10
|
mpteq2dva |
|- ( A e. RR+ -> ( x e. CC |-> ( x x. ( log ` A ) ) ) = ( x e. CC |-> ( ( log ` A ) x. x ) ) ) |
12 |
11
|
oveq2d |
|- ( A e. RR+ -> ( CC _D ( x e. CC |-> ( x x. ( log ` A ) ) ) ) = ( CC _D ( x e. CC |-> ( ( log ` A ) x. x ) ) ) ) |
13 |
|
1cnd |
|- ( ( A e. RR+ /\ x e. CC ) -> 1 e. CC ) |
14 |
2
|
dvmptid |
|- ( A e. RR+ -> ( CC _D ( x e. CC |-> x ) ) = ( x e. CC |-> 1 ) ) |
15 |
4
|
recnd |
|- ( A e. RR+ -> ( log ` A ) e. CC ) |
16 |
2 3 13 14 15
|
dvmptcmul |
|- ( A e. RR+ -> ( CC _D ( x e. CC |-> ( ( log ` A ) x. x ) ) ) = ( x e. CC |-> ( ( log ` A ) x. 1 ) ) ) |
17 |
6
|
mulid1d |
|- ( ( A e. RR+ /\ x e. CC ) -> ( ( log ` A ) x. 1 ) = ( log ` A ) ) |
18 |
17
|
mpteq2dva |
|- ( A e. RR+ -> ( x e. CC |-> ( ( log ` A ) x. 1 ) ) = ( x e. CC |-> ( log ` A ) ) ) |
19 |
12 16 18
|
3eqtrd |
|- ( A e. RR+ -> ( CC _D ( x e. CC |-> ( x x. ( log ` A ) ) ) ) = ( x e. CC |-> ( log ` A ) ) ) |
20 |
|
dvef |
|- ( CC _D exp ) = exp |
21 |
|
eff |
|- exp : CC --> CC |
22 |
21
|
a1i |
|- ( A e. RR+ -> exp : CC --> CC ) |
23 |
22
|
feqmptd |
|- ( A e. RR+ -> exp = ( y e. CC |-> ( exp ` y ) ) ) |
24 |
23
|
eqcomd |
|- ( A e. RR+ -> ( y e. CC |-> ( exp ` y ) ) = exp ) |
25 |
24
|
oveq2d |
|- ( A e. RR+ -> ( CC _D ( y e. CC |-> ( exp ` y ) ) ) = ( CC _D exp ) ) |
26 |
20 25 24
|
3eqtr4a |
|- ( A e. RR+ -> ( CC _D ( y e. CC |-> ( exp ` y ) ) ) = ( y e. CC |-> ( exp ` y ) ) ) |
27 |
|
fveq2 |
|- ( y = ( x x. ( log ` A ) ) -> ( exp ` y ) = ( exp ` ( x x. ( log ` A ) ) ) ) |
28 |
2 2 7 5 9 9 19 26 27 27
|
dvmptco |
|- ( A e. RR+ -> ( CC _D ( x e. CC |-> ( exp ` ( x x. ( log ` A ) ) ) ) ) = ( x e. CC |-> ( ( exp ` ( x x. ( log ` A ) ) ) x. ( log ` A ) ) ) ) |
29 |
|
rpcn |
|- ( A e. RR+ -> A e. CC ) |
30 |
29
|
adantr |
|- ( ( A e. RR+ /\ x e. CC ) -> A e. CC ) |
31 |
|
rpne0 |
|- ( A e. RR+ -> A =/= 0 ) |
32 |
31
|
adantr |
|- ( ( A e. RR+ /\ x e. CC ) -> A =/= 0 ) |
33 |
30 32 3
|
cxpefd |
|- ( ( A e. RR+ /\ x e. CC ) -> ( A ^c x ) = ( exp ` ( x x. ( log ` A ) ) ) ) |
34 |
33
|
mpteq2dva |
|- ( A e. RR+ -> ( x e. CC |-> ( A ^c x ) ) = ( x e. CC |-> ( exp ` ( x x. ( log ` A ) ) ) ) ) |
35 |
34
|
oveq2d |
|- ( A e. RR+ -> ( CC _D ( x e. CC |-> ( A ^c x ) ) ) = ( CC _D ( x e. CC |-> ( exp ` ( x x. ( log ` A ) ) ) ) ) ) |
36 |
30 3
|
cxpcld |
|- ( ( A e. RR+ /\ x e. CC ) -> ( A ^c x ) e. CC ) |
37 |
6 36
|
mulcomd |
|- ( ( A e. RR+ /\ x e. CC ) -> ( ( log ` A ) x. ( A ^c x ) ) = ( ( A ^c x ) x. ( log ` A ) ) ) |
38 |
33
|
oveq1d |
|- ( ( A e. RR+ /\ x e. CC ) -> ( ( A ^c x ) x. ( log ` A ) ) = ( ( exp ` ( x x. ( log ` A ) ) ) x. ( log ` A ) ) ) |
39 |
37 38
|
eqtrd |
|- ( ( A e. RR+ /\ x e. CC ) -> ( ( log ` A ) x. ( A ^c x ) ) = ( ( exp ` ( x x. ( log ` A ) ) ) x. ( log ` A ) ) ) |
40 |
39
|
mpteq2dva |
|- ( A e. RR+ -> ( x e. CC |-> ( ( log ` A ) x. ( A ^c x ) ) ) = ( x e. CC |-> ( ( exp ` ( x x. ( log ` A ) ) ) x. ( log ` A ) ) ) ) |
41 |
28 35 40
|
3eqtr4d |
|- ( A e. RR+ -> ( CC _D ( x e. CC |-> ( A ^c x ) ) ) = ( x e. CC |-> ( ( log ` A ) x. ( A ^c x ) ) ) ) |