Metamath Proof Explorer


Theorem dvdmsscn

Description: X is a subset of CC . This statement is very often used when computing derivatives. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses dvdmsscn.s
|- ( ph -> S e. { RR , CC } )
dvdmsscn.x
|- ( ph -> X e. ( ( TopOpen ` CCfld ) |`t S ) )
Assertion dvdmsscn
|- ( ph -> X C_ CC )

Proof

Step Hyp Ref Expression
1 dvdmsscn.s
 |-  ( ph -> S e. { RR , CC } )
2 dvdmsscn.x
 |-  ( ph -> X e. ( ( TopOpen ` CCfld ) |`t S ) )
3 restsspw
 |-  ( ( TopOpen ` CCfld ) |`t S ) C_ ~P S
4 3 2 sselid
 |-  ( ph -> X e. ~P S )
5 elpwi
 |-  ( X e. ~P S -> X C_ S )
6 4 5 syl
 |-  ( ph -> X C_ S )
7 recnprss
 |-  ( S e. { RR , CC } -> S C_ CC )
8 1 7 syl
 |-  ( ph -> S C_ CC )
9 6 8 sstrd
 |-  ( ph -> X C_ CC )