Description: X is a subset of CC . This statement is very often used when computing derivatives. (Contributed by Glauco Siliprandi, 5-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvdmsscn.s | |- ( ph -> S e. { RR , CC } ) |
|
dvdmsscn.x | |- ( ph -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) |
||
Assertion | dvdmsscn | |- ( ph -> X C_ CC ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdmsscn.s | |- ( ph -> S e. { RR , CC } ) |
|
2 | dvdmsscn.x | |- ( ph -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) |
|
3 | restsspw | |- ( ( TopOpen ` CCfld ) |`t S ) C_ ~P S |
|
4 | 3 2 | sselid | |- ( ph -> X e. ~P S ) |
5 | elpwi | |- ( X e. ~P S -> X C_ S ) |
|
6 | 4 5 | syl | |- ( ph -> X C_ S ) |
7 | recnprss | |- ( S e. { RR , CC } -> S C_ CC ) |
|
8 | 1 7 | syl | |- ( ph -> S C_ CC ) |
9 | 6 8 | sstrd | |- ( ph -> X C_ CC ) |