Description: Any integer divides 0. Theorem 1.1(g) in ApostolNT p. 14. (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvds0 | |- ( N e. ZZ -> N || 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 2 | 1 | mul02d | |- ( N e. ZZ -> ( 0 x. N ) = 0 ) |
| 3 | 0z | |- 0 e. ZZ |
|
| 4 | dvds0lem | |- ( ( ( 0 e. ZZ /\ N e. ZZ /\ 0 e. ZZ ) /\ ( 0 x. N ) = 0 ) -> N || 0 ) |
|
| 5 | 4 | ex | |- ( ( 0 e. ZZ /\ N e. ZZ /\ 0 e. ZZ ) -> ( ( 0 x. N ) = 0 -> N || 0 ) ) |
| 6 | 3 3 5 | mp3an13 | |- ( N e. ZZ -> ( ( 0 x. N ) = 0 -> N || 0 ) ) |
| 7 | 2 6 | mpd | |- ( N e. ZZ -> N || 0 ) |