| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							oveq1 | 
							 |-  ( x = K -> ( x x. M ) = ( K x. M ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							eqeq1d | 
							 |-  ( x = K -> ( ( x x. M ) = N <-> ( K x. M ) = N ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							rspcev | 
							 |-  ( ( K e. ZZ /\ ( K x. M ) = N ) -> E. x e. ZZ ( x x. M ) = N )  | 
						
						
							| 4 | 
							
								3
							 | 
							adantl | 
							 |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ ( K x. M ) = N ) ) -> E. x e. ZZ ( x x. M ) = N )  | 
						
						
							| 5 | 
							
								
							 | 
							divides | 
							 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> E. x e. ZZ ( x x. M ) = N ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							adantr | 
							 |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ ( K x. M ) = N ) ) -> ( M || N <-> E. x e. ZZ ( x x. M ) = N ) )  | 
						
						
							| 7 | 
							
								4 6
							 | 
							mpbird | 
							 |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ ( K x. M ) = N ) ) -> M || N )  | 
						
						
							| 8 | 
							
								7
							 | 
							expr | 
							 |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ K e. ZZ ) -> ( ( K x. M ) = N -> M || N ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							3impa | 
							 |-  ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( ( K x. M ) = N -> M || N ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							3comr | 
							 |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K x. M ) = N -> M || N ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							imp | 
							 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K x. M ) = N ) -> M || N )  |