Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
|- ( x = K -> ( x x. M ) = ( K x. M ) ) |
2 |
1
|
eqeq1d |
|- ( x = K -> ( ( x x. M ) = N <-> ( K x. M ) = N ) ) |
3 |
2
|
rspcev |
|- ( ( K e. ZZ /\ ( K x. M ) = N ) -> E. x e. ZZ ( x x. M ) = N ) |
4 |
3
|
adantl |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ ( K x. M ) = N ) ) -> E. x e. ZZ ( x x. M ) = N ) |
5 |
|
divides |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> E. x e. ZZ ( x x. M ) = N ) ) |
6 |
5
|
adantr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ ( K x. M ) = N ) ) -> ( M || N <-> E. x e. ZZ ( x x. M ) = N ) ) |
7 |
4 6
|
mpbird |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ ( K x. M ) = N ) ) -> M || N ) |
8 |
7
|
expr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ K e. ZZ ) -> ( ( K x. M ) = N -> M || N ) ) |
9 |
8
|
3impa |
|- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( ( K x. M ) = N -> M || N ) ) |
10 |
9
|
3comr |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K x. M ) = N -> M || N ) ) |
11 |
10
|
imp |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K x. M ) = N ) -> M || N ) |