Metamath Proof Explorer


Theorem dvds1

Description: The only nonnegative integer that divides 1 is 1. (Contributed by Mario Carneiro, 2-Jul-2015)

Ref Expression
Assertion dvds1
|- ( M e. NN0 -> ( M || 1 <-> M = 1 ) )

Proof

Step Hyp Ref Expression
1 simpl
 |-  ( ( M e. NN0 /\ M || 1 ) -> M e. NN0 )
2 1nn0
 |-  1 e. NN0
3 2 a1i
 |-  ( ( M e. NN0 /\ M || 1 ) -> 1 e. NN0 )
4 simpr
 |-  ( ( M e. NN0 /\ M || 1 ) -> M || 1 )
5 nn0z
 |-  ( M e. NN0 -> M e. ZZ )
6 1dvds
 |-  ( M e. ZZ -> 1 || M )
7 5 6 syl
 |-  ( M e. NN0 -> 1 || M )
8 7 adantr
 |-  ( ( M e. NN0 /\ M || 1 ) -> 1 || M )
9 dvdseq
 |-  ( ( ( M e. NN0 /\ 1 e. NN0 ) /\ ( M || 1 /\ 1 || M ) ) -> M = 1 )
10 1 3 4 8 9 syl22anc
 |-  ( ( M e. NN0 /\ M || 1 ) -> M = 1 )
11 10 ex
 |-  ( M e. NN0 -> ( M || 1 -> M = 1 ) )
12 id
 |-  ( M = 1 -> M = 1 )
13 1z
 |-  1 e. ZZ
14 iddvds
 |-  ( 1 e. ZZ -> 1 || 1 )
15 13 14 ax-mp
 |-  1 || 1
16 12 15 eqbrtrdi
 |-  ( M = 1 -> M || 1 )
17 11 16 impbid1
 |-  ( M e. NN0 -> ( M || 1 <-> M = 1 ) )