Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( M e. NN0 /\ M || 1 ) -> M e. NN0 ) |
2 |
|
1nn0 |
|- 1 e. NN0 |
3 |
2
|
a1i |
|- ( ( M e. NN0 /\ M || 1 ) -> 1 e. NN0 ) |
4 |
|
simpr |
|- ( ( M e. NN0 /\ M || 1 ) -> M || 1 ) |
5 |
|
nn0z |
|- ( M e. NN0 -> M e. ZZ ) |
6 |
|
1dvds |
|- ( M e. ZZ -> 1 || M ) |
7 |
5 6
|
syl |
|- ( M e. NN0 -> 1 || M ) |
8 |
7
|
adantr |
|- ( ( M e. NN0 /\ M || 1 ) -> 1 || M ) |
9 |
|
dvdseq |
|- ( ( ( M e. NN0 /\ 1 e. NN0 ) /\ ( M || 1 /\ 1 || M ) ) -> M = 1 ) |
10 |
1 3 4 8 9
|
syl22anc |
|- ( ( M e. NN0 /\ M || 1 ) -> M = 1 ) |
11 |
10
|
ex |
|- ( M e. NN0 -> ( M || 1 -> M = 1 ) ) |
12 |
|
id |
|- ( M = 1 -> M = 1 ) |
13 |
|
1z |
|- 1 e. ZZ |
14 |
|
iddvds |
|- ( 1 e. ZZ -> 1 || 1 ) |
15 |
13 14
|
ax-mp |
|- 1 || 1 |
16 |
12 15
|
eqbrtrdi |
|- ( M = 1 -> M || 1 ) |
17 |
11 16
|
impbid1 |
|- ( M e. NN0 -> ( M || 1 <-> M = 1 ) ) |