| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|- ( ( M e. NN0 /\ M || 1 ) -> M e. NN0 ) |
| 2 |
|
1nn0 |
|- 1 e. NN0 |
| 3 |
2
|
a1i |
|- ( ( M e. NN0 /\ M || 1 ) -> 1 e. NN0 ) |
| 4 |
|
simpr |
|- ( ( M e. NN0 /\ M || 1 ) -> M || 1 ) |
| 5 |
|
nn0z |
|- ( M e. NN0 -> M e. ZZ ) |
| 6 |
|
1dvds |
|- ( M e. ZZ -> 1 || M ) |
| 7 |
5 6
|
syl |
|- ( M e. NN0 -> 1 || M ) |
| 8 |
7
|
adantr |
|- ( ( M e. NN0 /\ M || 1 ) -> 1 || M ) |
| 9 |
|
dvdseq |
|- ( ( ( M e. NN0 /\ 1 e. NN0 ) /\ ( M || 1 /\ 1 || M ) ) -> M = 1 ) |
| 10 |
1 3 4 8 9
|
syl22anc |
|- ( ( M e. NN0 /\ M || 1 ) -> M = 1 ) |
| 11 |
10
|
ex |
|- ( M e. NN0 -> ( M || 1 -> M = 1 ) ) |
| 12 |
|
id |
|- ( M = 1 -> M = 1 ) |
| 13 |
|
1z |
|- 1 e. ZZ |
| 14 |
|
iddvds |
|- ( 1 e. ZZ -> 1 || 1 ) |
| 15 |
13 14
|
ax-mp |
|- 1 || 1 |
| 16 |
12 15
|
eqbrtrdi |
|- ( M = 1 -> M || 1 ) |
| 17 |
11 16
|
impbid1 |
|- ( M e. NN0 -> ( M || 1 <-> M = 1 ) ) |