Step |
Hyp |
Ref |
Expression |
1 |
|
dvds1lem.1 |
|- ( ph -> ( J e. ZZ /\ K e. ZZ ) ) |
2 |
|
dvds1lem.2 |
|- ( ph -> ( M e. ZZ /\ N e. ZZ ) ) |
3 |
|
dvds1lem.3 |
|- ( ( ph /\ x e. ZZ ) -> Z e. ZZ ) |
4 |
|
dvds1lem.4 |
|- ( ( ph /\ x e. ZZ ) -> ( ( x x. J ) = K -> ( Z x. M ) = N ) ) |
5 |
|
oveq1 |
|- ( z = Z -> ( z x. M ) = ( Z x. M ) ) |
6 |
5
|
eqeq1d |
|- ( z = Z -> ( ( z x. M ) = N <-> ( Z x. M ) = N ) ) |
7 |
6
|
rspcev |
|- ( ( Z e. ZZ /\ ( Z x. M ) = N ) -> E. z e. ZZ ( z x. M ) = N ) |
8 |
3 4 7
|
syl6an |
|- ( ( ph /\ x e. ZZ ) -> ( ( x x. J ) = K -> E. z e. ZZ ( z x. M ) = N ) ) |
9 |
8
|
rexlimdva |
|- ( ph -> ( E. x e. ZZ ( x x. J ) = K -> E. z e. ZZ ( z x. M ) = N ) ) |
10 |
|
divides |
|- ( ( J e. ZZ /\ K e. ZZ ) -> ( J || K <-> E. x e. ZZ ( x x. J ) = K ) ) |
11 |
1 10
|
syl |
|- ( ph -> ( J || K <-> E. x e. ZZ ( x x. J ) = K ) ) |
12 |
|
divides |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> E. z e. ZZ ( z x. M ) = N ) ) |
13 |
2 12
|
syl |
|- ( ph -> ( M || N <-> E. z e. ZZ ( z x. M ) = N ) ) |
14 |
9 11 13
|
3imtr4d |
|- ( ph -> ( J || K -> M || N ) ) |