Metamath Proof Explorer


Theorem dvds2addd

Description: Deduction form of dvds2add . (Contributed by SN, 21-Aug-2024)

Ref Expression
Hypotheses dvds2addd.k
|- ( ph -> K e. ZZ )
dvds2addd.m
|- ( ph -> M e. ZZ )
dvds2addd.n
|- ( ph -> N e. ZZ )
dvds2addd.1
|- ( ph -> K || M )
dvds2addd.2
|- ( ph -> K || N )
Assertion dvds2addd
|- ( ph -> K || ( M + N ) )

Proof

Step Hyp Ref Expression
1 dvds2addd.k
 |-  ( ph -> K e. ZZ )
2 dvds2addd.m
 |-  ( ph -> M e. ZZ )
3 dvds2addd.n
 |-  ( ph -> N e. ZZ )
4 dvds2addd.1
 |-  ( ph -> K || M )
5 dvds2addd.2
 |-  ( ph -> K || N )
6 dvds2add
 |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K || M /\ K || N ) -> K || ( M + N ) ) )
7 1 2 3 6 syl3anc
 |-  ( ph -> ( ( K || M /\ K || N ) -> K || ( M + N ) ) )
8 4 5 7 mp2and
 |-  ( ph -> K || ( M + N ) )