Description: Deduction form of dvds2add . (Contributed by SN, 21-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvds2addd.k | |- ( ph -> K e. ZZ ) |
|
| dvds2addd.m | |- ( ph -> M e. ZZ ) |
||
| dvds2addd.n | |- ( ph -> N e. ZZ ) |
||
| dvds2addd.1 | |- ( ph -> K || M ) |
||
| dvds2addd.2 | |- ( ph -> K || N ) |
||
| Assertion | dvds2addd | |- ( ph -> K || ( M + N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvds2addd.k | |- ( ph -> K e. ZZ ) |
|
| 2 | dvds2addd.m | |- ( ph -> M e. ZZ ) |
|
| 3 | dvds2addd.n | |- ( ph -> N e. ZZ ) |
|
| 4 | dvds2addd.1 | |- ( ph -> K || M ) |
|
| 5 | dvds2addd.2 | |- ( ph -> K || N ) |
|
| 6 | dvds2add | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K || M /\ K || N ) -> K || ( M + N ) ) ) |
|
| 7 | 1 2 3 6 | syl3anc | |- ( ph -> ( ( K || M /\ K || N ) -> K || ( M + N ) ) ) |
| 8 | 4 5 7 | mp2and | |- ( ph -> K || ( M + N ) ) |