Description: Deduction form of dvds2add . (Contributed by SN, 21-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvds2addd.k | |- ( ph -> K e. ZZ ) |
|
dvds2addd.m | |- ( ph -> M e. ZZ ) |
||
dvds2addd.n | |- ( ph -> N e. ZZ ) |
||
dvds2addd.1 | |- ( ph -> K || M ) |
||
dvds2addd.2 | |- ( ph -> K || N ) |
||
Assertion | dvds2addd | |- ( ph -> K || ( M + N ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvds2addd.k | |- ( ph -> K e. ZZ ) |
|
2 | dvds2addd.m | |- ( ph -> M e. ZZ ) |
|
3 | dvds2addd.n | |- ( ph -> N e. ZZ ) |
|
4 | dvds2addd.1 | |- ( ph -> K || M ) |
|
5 | dvds2addd.2 | |- ( ph -> K || N ) |
|
6 | dvds2add | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K || M /\ K || N ) -> K || ( M + N ) ) ) |
|
7 | 1 2 3 6 | syl3anc | |- ( ph -> ( ( K || M /\ K || N ) -> K || ( M + N ) ) ) |
8 | 4 5 7 | mp2and | |- ( ph -> K || ( M + N ) ) |