Step |
Hyp |
Ref |
Expression |
1 |
|
dvds2lem.1 |
|- ( ph -> ( I e. ZZ /\ J e. ZZ ) ) |
2 |
|
dvds2lem.2 |
|- ( ph -> ( K e. ZZ /\ L e. ZZ ) ) |
3 |
|
dvds2lem.3 |
|- ( ph -> ( M e. ZZ /\ N e. ZZ ) ) |
4 |
|
dvds2lem.4 |
|- ( ( ph /\ ( x e. ZZ /\ y e. ZZ ) ) -> Z e. ZZ ) |
5 |
|
dvds2lem.5 |
|- ( ( ph /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ( x x. I ) = J /\ ( y x. K ) = L ) -> ( Z x. M ) = N ) ) |
6 |
|
divides |
|- ( ( I e. ZZ /\ J e. ZZ ) -> ( I || J <-> E. x e. ZZ ( x x. I ) = J ) ) |
7 |
|
divides |
|- ( ( K e. ZZ /\ L e. ZZ ) -> ( K || L <-> E. y e. ZZ ( y x. K ) = L ) ) |
8 |
6 7
|
bi2anan9 |
|- ( ( ( I e. ZZ /\ J e. ZZ ) /\ ( K e. ZZ /\ L e. ZZ ) ) -> ( ( I || J /\ K || L ) <-> ( E. x e. ZZ ( x x. I ) = J /\ E. y e. ZZ ( y x. K ) = L ) ) ) |
9 |
1 2 8
|
syl2anc |
|- ( ph -> ( ( I || J /\ K || L ) <-> ( E. x e. ZZ ( x x. I ) = J /\ E. y e. ZZ ( y x. K ) = L ) ) ) |
10 |
9
|
biimpd |
|- ( ph -> ( ( I || J /\ K || L ) -> ( E. x e. ZZ ( x x. I ) = J /\ E. y e. ZZ ( y x. K ) = L ) ) ) |
11 |
|
reeanv |
|- ( E. x e. ZZ E. y e. ZZ ( ( x x. I ) = J /\ ( y x. K ) = L ) <-> ( E. x e. ZZ ( x x. I ) = J /\ E. y e. ZZ ( y x. K ) = L ) ) |
12 |
10 11
|
syl6ibr |
|- ( ph -> ( ( I || J /\ K || L ) -> E. x e. ZZ E. y e. ZZ ( ( x x. I ) = J /\ ( y x. K ) = L ) ) ) |
13 |
|
oveq1 |
|- ( z = Z -> ( z x. M ) = ( Z x. M ) ) |
14 |
13
|
eqeq1d |
|- ( z = Z -> ( ( z x. M ) = N <-> ( Z x. M ) = N ) ) |
15 |
14
|
rspcev |
|- ( ( Z e. ZZ /\ ( Z x. M ) = N ) -> E. z e. ZZ ( z x. M ) = N ) |
16 |
4 5 15
|
syl6an |
|- ( ( ph /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ( x x. I ) = J /\ ( y x. K ) = L ) -> E. z e. ZZ ( z x. M ) = N ) ) |
17 |
16
|
rexlimdvva |
|- ( ph -> ( E. x e. ZZ E. y e. ZZ ( ( x x. I ) = J /\ ( y x. K ) = L ) -> E. z e. ZZ ( z x. M ) = N ) ) |
18 |
12 17
|
syld |
|- ( ph -> ( ( I || J /\ K || L ) -> E. z e. ZZ ( z x. M ) = N ) ) |
19 |
|
divides |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> E. z e. ZZ ( z x. M ) = N ) ) |
20 |
3 19
|
syl |
|- ( ph -> ( M || N <-> E. z e. ZZ ( z x. M ) = N ) ) |
21 |
18 20
|
sylibrd |
|- ( ph -> ( ( I || J /\ K || L ) -> M || N ) ) |