Metamath Proof Explorer


Theorem dvds2subd

Description: Deduction form of dvds2sub . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses dvds2subd.k
|- ( ph -> K e. ZZ )
dvds2subd.m
|- ( ph -> M e. ZZ )
dvds2subd.n
|- ( ph -> N e. ZZ )
dvds2subd.1
|- ( ph -> K || M )
dvds2subd.2
|- ( ph -> K || N )
Assertion dvds2subd
|- ( ph -> K || ( M - N ) )

Proof

Step Hyp Ref Expression
1 dvds2subd.k
 |-  ( ph -> K e. ZZ )
2 dvds2subd.m
 |-  ( ph -> M e. ZZ )
3 dvds2subd.n
 |-  ( ph -> N e. ZZ )
4 dvds2subd.1
 |-  ( ph -> K || M )
5 dvds2subd.2
 |-  ( ph -> K || N )
6 dvds2sub
 |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K || M /\ K || N ) -> K || ( M - N ) ) )
7 1 2 3 6 syl3anc
 |-  ( ph -> ( ( K || M /\ K || N ) -> K || ( M - N ) ) )
8 4 5 7 mp2and
 |-  ( ph -> K || ( M - N ) )