| Step |
Hyp |
Ref |
Expression |
| 1 |
|
breq2 |
|- ( ( abs ` N ) = N -> ( M || ( abs ` N ) <-> M || N ) ) |
| 2 |
1
|
bicomd |
|- ( ( abs ` N ) = N -> ( M || N <-> M || ( abs ` N ) ) ) |
| 3 |
2
|
a1i |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` N ) = N -> ( M || N <-> M || ( abs ` N ) ) ) ) |
| 4 |
|
dvdsnegb |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> M || -u N ) ) |
| 5 |
|
breq2 |
|- ( ( abs ` N ) = -u N -> ( M || ( abs ` N ) <-> M || -u N ) ) |
| 6 |
5
|
bicomd |
|- ( ( abs ` N ) = -u N -> ( M || -u N <-> M || ( abs ` N ) ) ) |
| 7 |
4 6
|
sylan9bb |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( abs ` N ) = -u N ) -> ( M || N <-> M || ( abs ` N ) ) ) |
| 8 |
7
|
ex |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` N ) = -u N -> ( M || N <-> M || ( abs ` N ) ) ) ) |
| 9 |
|
zre |
|- ( N e. ZZ -> N e. RR ) |
| 10 |
9
|
absord |
|- ( N e. ZZ -> ( ( abs ` N ) = N \/ ( abs ` N ) = -u N ) ) |
| 11 |
10
|
adantl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` N ) = N \/ ( abs ` N ) = -u N ) ) |
| 12 |
3 8 11
|
mpjaod |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> M || ( abs ` N ) ) ) |