Step |
Hyp |
Ref |
Expression |
1 |
|
dvdszrcl |
|- ( M || N -> ( M e. ZZ /\ N e. ZZ ) ) |
2 |
|
simpr |
|- ( ( M || N /\ N || M ) -> N || M ) |
3 |
|
breq1 |
|- ( N = 0 -> ( N || M <-> 0 || M ) ) |
4 |
|
0dvds |
|- ( M e. ZZ -> ( 0 || M <-> M = 0 ) ) |
5 |
4
|
adantr |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( 0 || M <-> M = 0 ) ) |
6 |
|
zcn |
|- ( M e. ZZ -> M e. CC ) |
7 |
6
|
abs00ad |
|- ( M e. ZZ -> ( ( abs ` M ) = 0 <-> M = 0 ) ) |
8 |
7
|
bicomd |
|- ( M e. ZZ -> ( M = 0 <-> ( abs ` M ) = 0 ) ) |
9 |
8
|
adantr |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M = 0 <-> ( abs ` M ) = 0 ) ) |
10 |
5 9
|
bitrd |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( 0 || M <-> ( abs ` M ) = 0 ) ) |
11 |
3 10
|
sylan9bb |
|- ( ( N = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( N || M <-> ( abs ` M ) = 0 ) ) |
12 |
|
fveq2 |
|- ( N = 0 -> ( abs ` N ) = ( abs ` 0 ) ) |
13 |
|
abs0 |
|- ( abs ` 0 ) = 0 |
14 |
12 13
|
eqtrdi |
|- ( N = 0 -> ( abs ` N ) = 0 ) |
15 |
14
|
adantr |
|- ( ( N = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( abs ` N ) = 0 ) |
16 |
15
|
eqeq2d |
|- ( ( N = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( abs ` M ) = ( abs ` N ) <-> ( abs ` M ) = 0 ) ) |
17 |
11 16
|
bitr4d |
|- ( ( N = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( N || M <-> ( abs ` M ) = ( abs ` N ) ) ) |
18 |
2 17
|
syl5ib |
|- ( ( N = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( M || N /\ N || M ) -> ( abs ` M ) = ( abs ` N ) ) ) |
19 |
18
|
expd |
|- ( ( N = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( M || N -> ( N || M -> ( abs ` M ) = ( abs ` N ) ) ) ) |
20 |
|
simprl |
|- ( ( -. N = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> M e. ZZ ) |
21 |
|
simpr |
|- ( ( M e. ZZ /\ N e. ZZ ) -> N e. ZZ ) |
22 |
21
|
adantl |
|- ( ( -. N = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> N e. ZZ ) |
23 |
|
neqne |
|- ( -. N = 0 -> N =/= 0 ) |
24 |
23
|
adantr |
|- ( ( -. N = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> N =/= 0 ) |
25 |
|
dvdsleabs2 |
|- ( ( M e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( M || N -> ( abs ` M ) <_ ( abs ` N ) ) ) |
26 |
20 22 24 25
|
syl3anc |
|- ( ( -. N = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( M || N -> ( abs ` M ) <_ ( abs ` N ) ) ) |
27 |
|
simpr |
|- ( ( N || M /\ M || N ) -> M || N ) |
28 |
|
breq1 |
|- ( M = 0 -> ( M || N <-> 0 || N ) ) |
29 |
|
0dvds |
|- ( N e. ZZ -> ( 0 || N <-> N = 0 ) ) |
30 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
31 |
30
|
abs00ad |
|- ( N e. ZZ -> ( ( abs ` N ) = 0 <-> N = 0 ) ) |
32 |
|
eqcom |
|- ( ( abs ` N ) = 0 <-> 0 = ( abs ` N ) ) |
33 |
31 32
|
bitr3di |
|- ( N e. ZZ -> ( N = 0 <-> 0 = ( abs ` N ) ) ) |
34 |
29 33
|
bitrd |
|- ( N e. ZZ -> ( 0 || N <-> 0 = ( abs ` N ) ) ) |
35 |
34
|
adantl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( 0 || N <-> 0 = ( abs ` N ) ) ) |
36 |
28 35
|
sylan9bb |
|- ( ( M = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( M || N <-> 0 = ( abs ` N ) ) ) |
37 |
|
fveq2 |
|- ( M = 0 -> ( abs ` M ) = ( abs ` 0 ) ) |
38 |
37 13
|
eqtrdi |
|- ( M = 0 -> ( abs ` M ) = 0 ) |
39 |
38
|
adantr |
|- ( ( M = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( abs ` M ) = 0 ) |
40 |
39
|
eqeq1d |
|- ( ( M = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( abs ` M ) = ( abs ` N ) <-> 0 = ( abs ` N ) ) ) |
41 |
36 40
|
bitr4d |
|- ( ( M = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( M || N <-> ( abs ` M ) = ( abs ` N ) ) ) |
42 |
27 41
|
syl5ib |
|- ( ( M = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( N || M /\ M || N ) -> ( abs ` M ) = ( abs ` N ) ) ) |
43 |
42
|
a1dd |
|- ( ( M = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( N || M /\ M || N ) -> ( ( abs ` M ) <_ ( abs ` N ) -> ( abs ` M ) = ( abs ` N ) ) ) ) |
44 |
43
|
expcomd |
|- ( ( M = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( M || N -> ( N || M -> ( ( abs ` M ) <_ ( abs ` N ) -> ( abs ` M ) = ( abs ` N ) ) ) ) ) |
45 |
21
|
adantl |
|- ( ( -. M = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> N e. ZZ ) |
46 |
|
simprl |
|- ( ( -. M = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> M e. ZZ ) |
47 |
|
neqne |
|- ( -. M = 0 -> M =/= 0 ) |
48 |
47
|
adantr |
|- ( ( -. M = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> M =/= 0 ) |
49 |
|
dvdsleabs2 |
|- ( ( N e. ZZ /\ M e. ZZ /\ M =/= 0 ) -> ( N || M -> ( abs ` N ) <_ ( abs ` M ) ) ) |
50 |
45 46 48 49
|
syl3anc |
|- ( ( -. M = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( N || M -> ( abs ` N ) <_ ( abs ` M ) ) ) |
51 |
|
eqcom |
|- ( ( abs ` M ) = ( abs ` N ) <-> ( abs ` N ) = ( abs ` M ) ) |
52 |
30
|
abscld |
|- ( N e. ZZ -> ( abs ` N ) e. RR ) |
53 |
6
|
abscld |
|- ( M e. ZZ -> ( abs ` M ) e. RR ) |
54 |
|
letri3 |
|- ( ( ( abs ` N ) e. RR /\ ( abs ` M ) e. RR ) -> ( ( abs ` N ) = ( abs ` M ) <-> ( ( abs ` N ) <_ ( abs ` M ) /\ ( abs ` M ) <_ ( abs ` N ) ) ) ) |
55 |
52 53 54
|
syl2anr |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` N ) = ( abs ` M ) <-> ( ( abs ` N ) <_ ( abs ` M ) /\ ( abs ` M ) <_ ( abs ` N ) ) ) ) |
56 |
51 55
|
syl5bb |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) = ( abs ` N ) <-> ( ( abs ` N ) <_ ( abs ` M ) /\ ( abs ` M ) <_ ( abs ` N ) ) ) ) |
57 |
56
|
biimprd |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( abs ` N ) <_ ( abs ` M ) /\ ( abs ` M ) <_ ( abs ` N ) ) -> ( abs ` M ) = ( abs ` N ) ) ) |
58 |
57
|
expd |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` N ) <_ ( abs ` M ) -> ( ( abs ` M ) <_ ( abs ` N ) -> ( abs ` M ) = ( abs ` N ) ) ) ) |
59 |
58
|
adantl |
|- ( ( -. M = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( abs ` N ) <_ ( abs ` M ) -> ( ( abs ` M ) <_ ( abs ` N ) -> ( abs ` M ) = ( abs ` N ) ) ) ) |
60 |
50 59
|
syld |
|- ( ( -. M = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( N || M -> ( ( abs ` M ) <_ ( abs ` N ) -> ( abs ` M ) = ( abs ` N ) ) ) ) |
61 |
60
|
a1d |
|- ( ( -. M = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( M || N -> ( N || M -> ( ( abs ` M ) <_ ( abs ` N ) -> ( abs ` M ) = ( abs ` N ) ) ) ) ) |
62 |
44 61
|
pm2.61ian |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N -> ( N || M -> ( ( abs ` M ) <_ ( abs ` N ) -> ( abs ` M ) = ( abs ` N ) ) ) ) ) |
63 |
62
|
com34 |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N -> ( ( abs ` M ) <_ ( abs ` N ) -> ( N || M -> ( abs ` M ) = ( abs ` N ) ) ) ) ) |
64 |
63
|
adantl |
|- ( ( -. N = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( M || N -> ( ( abs ` M ) <_ ( abs ` N ) -> ( N || M -> ( abs ` M ) = ( abs ` N ) ) ) ) ) |
65 |
26 64
|
mpdd |
|- ( ( -. N = 0 /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( M || N -> ( N || M -> ( abs ` M ) = ( abs ` N ) ) ) ) |
66 |
19 65
|
pm2.61ian |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N -> ( N || M -> ( abs ` M ) = ( abs ` N ) ) ) ) |
67 |
1 66
|
mpcom |
|- ( M || N -> ( N || M -> ( abs ` M ) = ( abs ` N ) ) ) |
68 |
67
|
imp |
|- ( ( M || N /\ N || M ) -> ( abs ` M ) = ( abs ` N ) ) |