Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> M e. ZZ ) |
2 |
|
zaddcl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M + N ) e. ZZ ) |
3 |
|
simpr |
|- ( ( M e. ZZ /\ N e. ZZ ) -> N e. ZZ ) |
4 |
|
iddvds |
|- ( M e. ZZ -> M || M ) |
5 |
4
|
adantr |
|- ( ( M e. ZZ /\ N e. ZZ ) -> M || M ) |
6 |
|
zcn |
|- ( M e. ZZ -> M e. CC ) |
7 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
8 |
|
pncan |
|- ( ( M e. CC /\ N e. CC ) -> ( ( M + N ) - N ) = M ) |
9 |
6 7 8
|
syl2an |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M + N ) - N ) = M ) |
10 |
5 9
|
breqtrrd |
|- ( ( M e. ZZ /\ N e. ZZ ) -> M || ( ( M + N ) - N ) ) |
11 |
|
dvdssub2 |
|- ( ( ( M e. ZZ /\ ( M + N ) e. ZZ /\ N e. ZZ ) /\ M || ( ( M + N ) - N ) ) -> ( M || ( M + N ) <-> M || N ) ) |
12 |
1 2 3 10 11
|
syl31anc |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || ( M + N ) <-> M || N ) ) |
13 |
12
|
bicomd |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> M || ( M + N ) ) ) |