Metamath Proof Explorer


Theorem dvdsaddr

Description: An integer divides another iff it divides their sum. (Contributed by Paul Chapman, 31-Mar-2011)

Ref Expression
Assertion dvdsaddr
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> M || ( N + M ) ) )

Proof

Step Hyp Ref Expression
1 dvdsadd
 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> M || ( M + N ) ) )
2 zcn
 |-  ( M e. ZZ -> M e. CC )
3 zcn
 |-  ( N e. ZZ -> N e. CC )
4 addcom
 |-  ( ( M e. CC /\ N e. CC ) -> ( M + N ) = ( N + M ) )
5 2 3 4 syl2an
 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M + N ) = ( N + M ) )
6 5 breq2d
 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M || ( M + N ) <-> M || ( N + M ) ) )
7 1 6 bitrd
 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> M || ( N + M ) ) )