Description: An integer divides another iff it divides their sum. (Contributed by Paul Chapman, 31-Mar-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | dvdsaddr | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> M || ( N + M ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdsadd | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> M || ( M + N ) ) ) |
|
2 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
3 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
4 | addcom | |- ( ( M e. CC /\ N e. CC ) -> ( M + N ) = ( N + M ) ) |
|
5 | 2 3 4 | syl2an | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M + N ) = ( N + M ) ) |
6 | 5 | breq2d | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || ( M + N ) <-> M || ( N + M ) ) ) |
7 | 1 6 | bitrd | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> M || ( N + M ) ) ) |